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Abstract
Systems consisting of two interacting magnetic moments, or spins, in an applied
magnetic field play a role in the study of quantum chaos where they are used
as a classical analogue of a quantum spin system. The equations of motion for
such systems are particularly amenable to solution via a geometric integrator
constructed by splitting the Hamiltonian into integrable pieces. Such methods
have the advantage of restricting numerical solutions to the correct manifold
and respecting various geometric properties of the system. Some of these
properties, such as approximate conservation of total energy, are important
when producing Poincaré surfaces of section (PSSs) which are used to study the
onset of chaos in the classical system. The choice of coordinate system for the
equations of motion is also important with some choices leading to coordinate
singularities. We compare PSSs obtained via a generalized ‘leapfrog’ integrator
with those from a classical ‘black-box’ Runge–Kutta integrator. The effects of
the coordinate singularity on the accuracy and the energy of the solution is also
investigated.

PACS numbers: 75.10.Dg, 05.45.Pq
Mathematics Subject Classification: 37M15, 65P10, 65D30

The model Hamiltonian for a system of two interacting magnetic moments in an applied
magnetic field can be given by

H( �S1, �S2) = −J (S1xS2x + S1yS2y) + λ(S1x + S2x), (1)

where �Sl = [Slx, Sly, Slz]T , l = 1, 2 are the angular momentum vectors in R
3. The coupling

strength is J ∈ R and the applied magnetic field strength is λ ∈ R. Such systems can be
viewed as the classical analogue of quantum spin systems and play a role in the investigation
of quantum chaos where they are used to study the correspondence between classical and
quantum dynamical systems [1–3]. In Cartesian coordinates the equations of motion for the
system (1) are given by

d �Sl

dt
= − �Sl × ∂H

∂ �Sl

= [Slx, Sly, Slz]
T × [JSmx − λ, JSmy, 0]T , l �= m. (2)
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This is a Lie–Poisson system with the generalized Poisson bracket {F,G}(�S) =
∇F(�S)T J (�S)∇G(�S), �S = [ �S1

T
, �S2

T ]T
, where J (�S) depends linearly on �S, namely,

J (�S) =
[

skew(�S1) 0
0 skew(�S2)

]
.

The equations of motion (2) can be expressed compactly as d
dt

�S = XH := J (�S)∇H(�S). The

system has 1
2‖ �Sl‖2 as casimirs; i.e.,

{
1
2‖ �Sl‖2,G(�S)

} = 0 for all G.
When either J or λ is zero the system is integrable. For both J and λ non-zero the system

appears to be non-integrable, with chaotic trajectories appearing in the Poincaré sections.
Writing �Sl = [sin θl cos φl, sin θl sin φl, cos θl] (i.e. ‖�Sl‖ = 1) allows us to give a local

change of coordinates to canonical form with pl = cos θl and ql = φl . The corresponding

equations of motion then have the usual form d
dt

[q, p]T = J∇H(q, p),J = [
0 I

−I 0

]
. When

written in terms of φl and θl these are

φ̇l = J cos(φl − φm) cot θl sin θm − λ cot θl cos φl (3)

θ̇l = −J (−1)l sin θm sin(φl − φm) − λ sin φl. (4)

In these coordinates φ̇l is singular at θl = 0.
The equations of motion (3) and (4) have the advantage that solutions of the equations

are automatically constrained to the correct symplectic manifold (the Cartesian product of two
unit spheres). The price of this is that the singularities in (3) can cause problems for numerical
integrators when the solution passes close to the north or south pole of the sphere.

The Lie–Poisson system given by (2) is amenable to solution via a geometric integrator
consisting of the composition of three planar rotations [4–8]. This is similar to the well-studied
case of (geometric numerical) integration of the free rigid-body [9–12]. Possible advantages
of such a treatment are as follows:

• Using Cartesian coordinates instead of the spherical coordinates in (3) and (4) avoids the
problem of singularities (at θi = 0 mod π ).

• The integrator preserves the Hamiltonian structure of the system, (i.e. is symplectic),
and hence, approximately conserves the total energy. This is important for PSSs where
solutions are computed on a constant energy manifold.

• The geometric integrator can be implemented very cheaply. The trigonometric functions
in the rotation matrices can be replaced with a suitable approximation to further reduce
the cost of the method.

• The rotation matrices used for the geometric integrator all have a determinant of one.
This conserves the casimirs 1

2‖ �Sl‖2 so that solutions remain on the correct manifold. This
is generally not the case for a classical integrator with equation (2), though it is for the
system given by (3) and (4).

If the Hamiltonian (1) is split as H = Hx + Hy + Hλ = (−JS1xS2x) + (−JS1yS2y) +
λ(S1x + S2x), with corresponding induced vector fields XH = XHx

+ XHy
+ XHλ

, then the
solutions to the individual components of the vector field are given respectively by rotations
Rx(t) and Ry(t) about the x and y axes due to the interaction between the two spins and a
rotation Rλ(t) about the x axis due to the interaction between the spins and the applied magnetic
field. The angles of rotation for the x, y and λ components are αl = tJSmx(t0), βl = tJSmy(t0)

and γ = −tλ, respectively. Replacing t with a time step τ and composing the rotations gives
a symplectic integrator for the system (2). An integrator of order N is then given by choosing
ai, bi, ci, i = 1, . . . , k such that �S(t0 + τ) = ∏k

i=1 Rx(aiτ )Ry(biτ )Rλ(ciτ )�S(t0) + O(τN+1).
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We use the second-order method given by k = 6 and a1 = b2 = c3 = c4 = b5 = a6 = 1
2 with

all other a, b, c set to zero. This is the well-known ‘generalized leapfrog’ method. The central
stages of the method coalesce and can be combined, also, when output is not required at every
step the outer stages of the composition can also be combined so that the method requires only
four stages per time-step.

More details on the derivation of splitting methods for geometric integration, in particular,
higher-order splittings with a minimal number of stages, can be found in [13]. The choice of
optimal coefficients for such splittings is discussed in [10].

Poincaré surfaces of section (PSSs) can give a view of the general dynamical properties
of a system; in particular, they can show the existence of chaotic orbits. Here we show PSSs
for λ = 0.2 and 2.5. (PSSs for λ = 0.02, 0.2, 0.5 and 2.5 are shown in [14].) Trajectories
for the PSSs were calculated by using the generalized leapfrog method to integrate the system
(2) (with a step size of 0.1). The sections were taken with θ2 = π/2 and θ̇2 > 0, i.e.
S2z = 0, Ṡ2z < 0, and at energy E = −0.1. The domain of the section is therefore a region
on the unit sphere corresponding to the first spin. We use this section for consistency with
[1], although we will show below that it is not in fact well-defined, leading to puzzling phase
portraits.

The resulting PSSs are shown in figure 1 where they are compared with PSSs generated
using equations (3) and (4) with a black-box classical integrator (in this case ode45 with
RelTol = 10−4, an order (4,5) Dormand–Prince pair with step size control from the package
odesuite; see [15] for details). The computation times for the orbits using the ode45 integrator
were about ten times longer than those for the same orbits calculated with the generalized
leapfrog integrator.

The PSSs produced by the two different integrators show the same chaotic regions
appearing for the same values of λ. The PSSs also qualitatively match those in [1]. The
‘smearing’ of the invariant curves of the PSSs from the classical integrator is due to orbits
moving away from the constant energy manifold, especially near the singularity when spherical
coordinates are used. The integration times for the orbits are therefore limited for this
integrator.

The similarities between the results from the leapfrog method and the black-box method
in figure 1 indicate that the curious ‘folding’ behaviour at the top and bottom of the PSSs
(θ = 0 mod π ) is due to the equations of motion rather than being an effect of the coordinate
singularity in equation (3), as is claimed in [1].

A more natural approach to the PSSs is to plot the points on the surface of the unit sphere
which prevents the regions about θ1 = 0 and θ1 = π from being distorted. Figure 2 shows the
resulting view of the PSSs for the generalized leapfrog method.

Not all of the points on the sphere S1 correspond to an initial condition for a point on the
PSS. For fixed energy E, the excluded region is bounded by a closed curve on the unit sphere;
namely, for S1x ∈ [−1, 1],

S2
1y <

(E − λS1x)
2 − (JS1x − λ)2

J 2
, S2

1z = 1 − S2
1x − S2

1y. (5)

Figure 3 shows the excluded regions of the PSSs for E = −0.1 and λ = 0.2 and 2.5.
When λ is small the excluded regions include the north and south poles of the spheres. For
large values of λ, the excluded region also becomes large and its centre shifts towards the
equatorial plane.

The flow of the system is tangential to the PSS (i.e. Ṡ2z = 0) along the boundaries of the
excluded regions. The Poincaré map can become singular along these curves which explains
the apparently singular behaviour of some of the invariant curves in figure 3.
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Figure 1. Poincaré surfaces of section in spherical polar coordinates (ρ = 1), on the sphere
corresponding to �S1, for λ = 0.2 and 2.5 with energy E = −0.1, generated with the generalized
leapfrog method with τ = 0.1 (left) and with a black-box classical integrator ode45 with
RelTol = 10−4 (right). Typical orbit lengths are (1 ∼ 100)(100π) for the leapfrog orbits
and (1 ∼ 3)(100π) for ode45. An orbit of length 100π corresponds to about 125 crossings of the
section.

The singularity in the equations of motion for the spherical coordinates can lead to large
local errors from numerical integrators when the solution passes close to the singularity.
However, large errors in the coordinates need not lead to large errors in position. To explore
this question we calculated the Euclidean error in the position, after a single time-step, for
decreasing values of θ1, using the generalized leapfrog (LF) method in Cartesian coordinates
and the second-order Runge–Kutta (RK2) method with the equations of motion in spherical
coordinates. Choosing φ2 and θ2 away from a singularity, the L2 error in �S was calculated for
a range of values of φ1, θ1 and λ. Taking the worst case over the range of φ1 values showed
that for values of θ1 away from 0 and π , local errors in the LF and RK2 methods are similar
(figure 4). However, as θ1 → 0 the local error for RK2 grows as O

(
θ−2

1

)
while the error for

LF remains constant.
Energy conservation can give a second indication of the effect of the coordinate singularity.

A trajectory passing within about 0.1 of a singularity is sufficient to cause a jump in E of
100% with RK2. Trajectories passing closer to the singularity cause larger jumps. The
singularity due to the choice of coordinate system has a far larger effect on the energy error
than the choice of integrator: the same calculation performed with RK2, but in Cartesian
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Figure 2. Poincaré surfaces of section, in Cartesian coordinates, for λ = 0.2 and 2.5 with
energy E = −0.1 generated with the generalized leapfrog method when plotted in spherical
coordinates.

Figure 3. PSSs in Cartesian coordinates for E = −0.1 and λ = 0.2 and 2.5 as viewed from the
north pole of the sphere. The excluded regions are shaded.

(non-singular) coordinates showed a drift in the energy of about 2.5% per 5000 time-steps
(for τ = 0.1). In comparison, the energy of the same solution calculated with the leapfrog
integrator oscillated about the initial energy in a regular fashion and with a maximum amplitude
for the oscillations of about 2.5% of the total energy.

In conclusion, it is necessary to pay attention to both the integration method and
the coordinate system used in order to accurately calculate orbits of the two-spin system
numerically. Appropriately chosen geometric numerical integration methods are able to offer
vastly superior results for spin systems. Also, when calculating PSSs it is necessary to give
consideration to the topology and domain of the section. Naively chosen sections can easily
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Figure 4. Local error (with τ = 0.1) as a function of θ1 for the RK2 integrator with the equations
of motion given in spherical coordinates (solid lines). Initial conditions: φ2 = π/4, θ2 = π/2
with φ1 chosen so as to give an approximate ‘worst-case’ for the local error. The local errors for
the leapfrog integrator (and equations of motion in Cartesian coordinates) are given for the same
values of φ2 and θ2 as used for the RK2 results but with the value of φ1 picked to give the ‘worst’
solution for the leapfrog integrator (dotted lines). Four values of λ were used: 0.02, 0.2, 0.5 and
2.5 (circles, boxes, stars and triangles, respectively). As θ1 approaches zero the local error for the
system in spherical coordinates grows like O(θ−2

1 ).

fail to yield well-defined Poincaré sections, leading to singularities in the computed Poincaré
maps.
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