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On a possible mechanism of anomalous diffusion in 
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The main characteristic features of the geophysical turbulence are differential 
(so called ,8-effect) rotation and stratification. Each of these phenomena is respon-
sible for a specific type of waves: planetary or Rossby waves and internal gravity 
waves, respectively. It is well-known that e.g. for the ,8- plane turbulence [1] one 
may have vortex-dominated (Le. close to the 2d turbulence), wave-dominated or 
crossover regimes depending on the value of the characteristic nonlinearity param-
eter. Hence, if the Lagrangian transport in geophysical turbulence is studied the 
waves will playa role and it is important to know what are, precisely, their trans-
port properties. In this connection it is known that, e.g., electromagnetic waves of 
sufficiently large amplitude in plasma may trap and effectively transport charged 
particles [2]. The crucial difference with fluid dynamics, however, is that nonlinear 
interaction of electromagnetic waves is weak even for large wave amplitudes and, 
usually, may be safely neglected while it is not the case for the above-mentioned 
waves. Thus, it is necessary to include nonlinear effects which will be done pertur-
batively in what follows. Note that previously the nonlinear interactions among 
waves were not taken into account neither in the studies of mixing by finite number 
of waves [3, 4, 5] nor in the numerical studies of diffusion by an ensemble of waves 
[6,7]. 

Below we shall limit ourselves to Rossby waves, the conclusions for internal 
gravity waves being similar. The dynamical system we are interested in is an equa-
tion for the streamfunction 'IjJ of the two-dimensional velocity field v = (-o'IjJ/oy, 
o'IjJ / ox) 

+ J('IjJ, 6.'IjJ) + = 0 (1) 

h f.l' th C . l' t J(A B) aA aB aA aB A a2 a2 
were fJ IS e ono IS parame er, , = ax ay - ay ax' u = ax2 + ay2 
and x = (x,y) are Cartesian coordinates on the ,8-plane. The linear part of this 
equation describes propagation of Rossby waves of the form 'IjJ = a cos( wt - k . x + 
<p) with dispersion relation w = o'(kx , ky) = As is well known [8], in the 
lowest order of the perturbation expansion in wave amplitude the Rossby waves' 
interactions are dominated by resonant triads. Indeed, if one takes a triad of waves 

3 

'ljJl = L ai cos <Pi 
i=l 

(2) 
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satisfying the resonance conditions 

(3) 

where 

(4) 

Oi = O(kxp kyJ, E is the small parameter, and ai = ai(r) where r = cIt is the 
slow modulation time, as a first-order approximation to the perturbative expansion 
'ljJ = c:'ljJl + c:2'ljJ2 + ... of the solution of (1), then the integrability conditions for 
the next approximation, 'ljJ2, give modulation equations for the wave amplitudes 
which admit solutions in terms of elliptic functions 

In terms of the initial amplitudes and interaction parameters the modulus,.., of the 
elliptic functions is given by 

2 _ I I'll 
,.., - 2 ' 

ala 1'2 
(6) 

where I'i, i = 1,2,3 are the interaction parameters 

(7) 

and the cross product of two vectors a and b is defined as a x b =axby - aybx . 
The modulation period, TM, is equal to the period K(,..,) of the elliptic functions, 
where K is the complete elliptic integral of the first kind. Note that one may solve 
explicitely the resonance conditions (3) and parameterize the triad space by two 
angles in the wavevectors' triangle, namely by a, the angle formed by kl and k3, 
and by 1', that formed by k2 and k3 - a parameterization which will be used to 
explore the triads' space in what follows. 

Advection of the passive tracer by the divergenceless velocity field associated 
with a streamfunction 'ljJ is given by 

±(t) = _ t); y(t) = t) . (8) 

where x(t), y(t) denote the particle position at time t. These equations represent 
a "one and a half" degree of freedom Hamiltonian system which may be studied 
by standard methods once 'ljJ, the Hamiltonian, is known as a function of x, y 
and t. Before considering advection by resonant triads (2) we first summarize the 
dynamics of (8) in the presence of two harmonic waves. In this case 

(9) 



On a possible mechanism of anomalous diffusion in geophysical turbulence 205 

equations (8) are integrable as the time dependence may be eliminated by choos-
ing the phases <J>1,2 as new dynamical variables (provided the matrix K = 

is nonsingular). These variables are defined on the torus T2 but 
2x 2y 

may be lifted to its universal cover R 2. We get a system of equations 

(10) 

which is an integrable canonical one-degree-of-freedom Hamiltonian system with 
Hamiltonian 

H = 0 1 <J>2 - 02<J>1 - (k1 X k2)(A1 cos <J>1 + A2 cos <J>2)' (11) 

We call x physical space, and <J> = (<J>1' <J>2) phase space. They are related by 

(12) 

If a particle has x(t) bounded we call it frozen; if it is not bounded, but 
limt-.oo x(t)/t = 0, we say it is diffusive (and, generally, x(t) rv t 1/ 2 ); if a non-zero 
limf-;oo x(t)/t exists, we say the motion is ballistic. Ballistic motion corresponds 
to particles being advected with, on average, a constant velocity; we call these 
particles shooters. In general, the situation where x(t) rv to. with a i- 1/2 is known 
as anomalous diffusion. For advection by a pair of harmonic waves (9 - 11) the 
motion in phase space is along the isoenergetic curves H = canst with an average 
(over <J> E T2) velocity 0 = (01,02) which gives no average (over <J» displacement 
in physical space. However, two different situations may take place according to 
the topology of the isoenergetic curves which is determined by the interplay of the 
linear and nonlinear terms in (11). In the case when the linear term is dominating 
the isolines of H are open and each point in the phase space is moving with a ve-
locity close to the average velocity. In physical space any particle therefore remains 
close to its initial position and is frozen. In the case when linear and nonlinear 
terms are comparable, fixed points, each with a surrounding island of periodic 
orbits (elliptic islands) appear in the phase space. A fixed point in <J>-space, by 
virtue of (12), corresponds to a ballistically advected particle in physical space. It 
is clear that the whole elliptic island around a given fixed point will be also ballis-
tically advected. The relative number of shooters is, thus, defined by the fraction 
of phase space occupied by the elliptic islands. All other points moving along the 
open orbits in phase space stay close to the origin in the physical space; but, in 
order to maintain zero average velocity, the cloud of "normal" points must drift 
in the direction opposite to the shooters' motion. 

If confirmed, the ballistic advection phenomenon would provide a mechanism 
for the anomalous diffusion in geophysical turbulence. However, the condition for 
the appearance of shooters means that the wave amplitudes are relatively large 
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and, thus, it is necessary to take into account the nonlinear effects. We therefore 
consider a resonant triad engendered by an initial pair of waves. The resonance 
condition (3) allows us to eliminate the third phase <P3 and, again, to get a Hamil-
tonian system defined in the phase space (<p 1 , <P2). The equations of motion and 
the Hamiltonian are, respectively: 

(13) 

H = D1 <P2 - D2<P1 - (k1 x k2) (a1 (t) cos <P1 + a2 (t) cos <P2 + a3 (t) cos( <P1 + <P2)) 
(14) 

and represent a one-and-a-half degree of freedom dynamical system which is not 
integrable due to the explicit time-dependence of the ai. Note that the modulation 
ai(t), although periodic with period TM , is not harmonic, except for the degenerate 
case of the isosceles triads . A standard method of investigation for this type of 
dynamical system is a numerical integration and a study of the phase portrait 
resulting from the iterations of the Poincare map f p over the modulation period 
TM . 

In general, for the non-integrable system (13) one might expect a chaotic sea 
with, possibly, some islands of regular behavior as a typical phase portrait. As 
(3 ----+ 00 is an integrable limit of (13), one might also expect that for any triad a 
more and mbre regular pattern of dynamical behavior emerges with increasing (3. 
As in the integrable case of a pair of waves, the presence of elliptic islands would 
signify a presence of shooters. Indeed, suppose the Poincare map fp : T2 ----+ T2 of 
(13) has a period n fixed point <Po with a winding number m about the torus and 
n is the discrete time. This means that in terms of the lift map J p on R 2 we have 

Jp( <Po) = <Po + 27rm (15) 

and the distance travelled in time nTM in physical space is 

X =K- 1 . (DnTM - 27rm) + x(O). (16) 

Hence, the fixed points and the regular orbits around them belonging to the sta-
bility islands having the same average winding number correspond to shooters. 
Chaotic orbits correspond to slow diffusion. The presence of stability islands re-
sults in a slow drift in physical space of the diffusive cloud away from the shooters, 
so as to compensate for the fast escape of the shooters and to keep the average 
winding number zero. 

We performed a direct numerical investigation of (13) for a large range of 
triads using the above-mentioned explicit parametrization of these latter. In order 
to be consistent with perturbation theory we were trying to minimize the ratio 
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Figure 1: The phase portrait of the triad 'Y = 0.7, ct = 1 at 13 = .5 after 2000 TM; 
TM = 47.14. The wave periods Ti are 22.66, 10.98, 21.27, respectively. An elliptic 
trajectory inside the island is also shown. 

ma;;:il by working in the correspondingly chosen region of the triads' parame-
ters space. The smallness of this ratio may be considered as a rough criterion of 
applicability of the resonant triad description of the wave field generated by an 
initially active pair of waves 1 and 3. As we wish to follow many orbits of (13) 
for long times at many different parameter values we use a symplectic integrator 
[9], thus ensuring that the computed Poincare map fp is exactly (up to roundoff 
error) area-preserving and that no spurious non-Hamiltonian-like dynamics or bi-
furcations will be induced. We, generically, observe two types of scenario. The first 
one consists in a direct transition to quasi-uniform chaos from the regular behav-
ior while decreasing 13. The second one is characterized by a non-mixing ergodic 
behavior for large 13, as expected, which gives place to chaos by more and more 
vigorous distortion of the phase trajectories and, then, to the birth of multiple rel-
atively small and/or narrow islands. These primary islands disappear giving rise to 
chaos from which secondary "fat" islands are born (Fig. 1). It is these fat islands 
that give rise to relatively large numbers of shooters and a corresponding large 
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Figure 2: The dispersion of tracer particles, initially uniformly distributed in the 
(2n? box in the phase-space after 500 modulation periods. The triad is the same 
as in Fig. 1. 

amount of anomalous diffusion of tracer particles (Fig. 2). Although by technical 
reasons we did not explore the whole of parameter space and, thus, are unable to 
estimate a measure of islands-bearing triads we, nevertheless, see that these triads 
and, hence, the phenomenon of the ballistic transport are common. At the same 
time, a chaotic mixing related to the chaotic part of the phase portrait is universal. 
It should be noted that elliptic islands appear when nonlinearity is well-developed 
(the ratio max(Ti)/TM rv i or greater) while the threshold for chaotic mixing 
corresponds to higher values of {3. 

Thus, we have shown that chaotic mixing accompanied in many cases by 
ballistic advection of a fraction of tracer particles characterize the Lagrangian 
transport by resonant triads of Rossby waves. The fact that the nontrivial dynam-
ical behavior we observed takes place in the domain of parameters corresponding 
to the transition from wave-dominated to vortex-dominated regimes in {3-plane 
turbulence [1] suggests that this crossover regime may have nontrivial transport 
properties. This remains to be checked in direct numerical simulations. 
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