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WHAT will the Solar System be like in the
distant future? Will Pluto and Neptune col-
lide? Will the Earth be thrown into a dif-
ferent orbit by the combined gravitational
pull from all the other planets? You might
think that the answers are easily calcu-
lated. Just program a computer with New-
ton’s laws of motion, tell it the positions of
the planets now, and wait while it grinds
out the future of the Solar System for the
next billion years. Right?

Wrong. With a calculation as compli-
cated as this, the computer is almost cer-
tain to come up with the wrong answer. It
is not that the computer, or even that the
person programming it, makes mistakes.
The problem arises because computer
replaces real time with a series of
snapshots. Consequently, the calcula-
tions a computer makes are not
absolutely precise, so it can only
provide us with an approximate pic-
ture of what will happen in the real
world. Normally the errors are so
small that they go unnoticed, but
when computers are set to work
on the enormously long string d
of calculations needed to il
simulate the movement of the \
planets round the Sun, tiny
errors in each step can
build up to make the final
result wildly inaccurate.

Confusion reigns

The errors are inevitable
because the equations
describing the Solar System
are so complicated that pre-
cise solutions cannot even
be attempted. Problems arise
when errors build up sys-
tematically or, worse, when
the errors become chaotic. If
this happens, the error in
the calculated result will
not only be large, but

unpredictable too. They can lead to results
that defy the laws of physics—in an extreme
case the planets could spiral into the Sun, for
example, or gain energy from nowhere and
spin off into space.

These errors affect every computer model
although their effects go unnoticed because
calculations usually run for a short time pre-
venting wild variations from building up.
Even a simple pendulum could start swinging
like a propeller if the simulation were left to
run for long enough.

Mathematicians have discovered they can
get round these problems if the computer
model is built not on the laws of motion that
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symplectic space

apply in our familiar three-dimensional
space, but on the geometrical laws of a
much larger mathematical world called
symplectic space. What we understand as
movement in our space can be repre-
sented as pure geometry in the very dif-
ferent world of symplectic space. This
geometry provides a much more efficient
way of representing movement math-
ematically: while it cannot prevent the
computer from introducing errors, it
ensures that, whatever the errors, the
outcome is a physically reasonable one.
The laws of geometry in symplectic
space are applied through mathematical

tools known as symplectic integrators:
simple formulae that a computer can use
to create reliable simulations of chaotic
and complex aspects of real systems.
Symplectic integration is already helping
scientists to model the forces between
tens of thousands of atoms in a crystal lat-
tice—a system far too complex for con-
ventional methods to handle reliably—

and successfully predict properties of the
material such as its strength or the way
it vibrates.

Not every system in our Universe is
symplectic, however. Dissipative forces
such as friction or viscosity do not obey
geometric laws and cannot be simulated
using symplectic integration. Applying
the method to weather forecasting is

‘In an extreme case the planets could spiral into
the Sun or gain energy and spin off into space’
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complicated, for example, because air
resistance is a dissipative force and has to
be ignored.

One example where symplectic sim-
ulations can help is in designing circular
particle accelerators. The Main Ring
accelerator at Fermilab in Illinois, which
was built in 1972 before symplectic
motion was understood, cannot store par-
ticles for long because small variations in
their paths rapidly build up into uncon-
trollably large deviations. Physicists now
realise that with the new symplectic meth-
ods they would have been able to simu-
late these effects, and design the
machine to cope.

Conventional computer models use
position and time to deduce velocity, but

position and velocity are treated on an
equal footing in symplectic space. For
instance, in a model of the Solar System
each planet is defined by six dimensions—
three for its velocity in each direction and
three for its position. The dimensions are
coupled by special kinds of angles known
as symplectic angles. These angles cannot
be measured with a protractor: two lines
superimposed on each other, for example,
have a normal angle between them of 0°
but a symplectic angle of 90°.

The special features of this weird space
are its laws of geometry. That space and
geometry are closely linked can be seen by
looking at the properties of a triangle in
two different types of space. We are
taught at school that the angles of a trian-
gle add up to 180°, but this is not always
true if the triangle is not on a flat plane.
For example, imagine a triangle on the
surface of the globe, which has one cor-
ner at the North Pole and the other two
on the equator. No matter what the angle
at the pole, both the angles at the equa-
tor will be exactly 90°, so the three angles
are bound to add up to more than 180°.
By choosing the space carefully, mathema-
ticians can arrange for certain geometric
laws to hold true. In the example of the
triangle, the angles add up to 180° only if
the space is flat.

If the space is complex, then the geo-
metric laws can be complex too. As the
planets move in symplectic space acc-
ording to the symplectic laws of geo-
metry, so they move in three-dimensional
space according to Newton’s laws of
motion. Symplectic geometry ensures that

-symplectic angles remain the same as

the planets move. This geometry can
describe all the complicated motion of the
Solar System.

Symplectic space has been hard to
explore because its geometry is so unlike
that of three-dimensional space (the name
comes from the Greek word symplegma,
meaning tangled or plaited). After many
decades of study, the breakthrough came
during the 1960s when the Russian math-
ematician Vladimir Arnol’d at the Moscow
State University, along with Andrei
Kolmogorov and Jiirgen Moser, proved a
theorem that explains some of the impli-
cations that these hidden geometrical laws
hold for real motion.

In the case of a single planet in a circu-

The tilt of Pluto’s orbit relative to the Earth’s oscillates

chaotically like a spinning

coin coming to rest’

lar orbit around the Sun, the motion is
nonchaotic and well understood. But one
problem that could not be by conventional
means is what happens when there is a
second planet exerting a small gravita-
tional pull on the first. Does the circular
orbit merely become slightly elliptical?
Does it develop a chaotic wobble? Or will
the first planet wander off entirely? The
Kolmogorov-Arnol’d-Moser (KAM) team
proved that all three are possible. Given
certain initial conditions, the orbit can still
be regular. But if the starting conditions
are slightly different, it could be chaotic.
Once in a chaotic state, the orbit might
even “leak out” in a process known as
Arnol’d diffusion, which causes the planet
to wander away from its circular orbit.

Alternative orbits

The problem lies in determining which
type of orbit a system will adopt. The KAM
theorem shows that chaos and order
are infinitely mixed. Between any two
regular orbits lie chaotic ones, and the
planet could adopt any one of an infinite
number of each type of orbit. But a planet
that behaves nonchaotically can never
become chaotic.

Traditional computer models of plan-
etary orbits produce outrageous results
because the build-up of errors in the cal-
culation leads to results that run counter
to the laws of motion on which the model
is based. Symplectic integration avoids
these pitfalls by modelling not just the

19 March 1994
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forces and accelerations as hap-
pens in conventional computer
simulations, but by also keeping
symplectic angles fixed in
symplectic space. While the com-
putation will still, inevitably,
accumulate errors, .the KAM
theorem guarantees that they will
not nudge a planet into an
impossible orbit. The result does
not predict the exact motion of
our Solar System, but it does pro-
vide useful information about it.
For example, astronomers can
work out Pluto’s distance from
the Sun in a billion years’ time,
but not which side of the Sun it will then
be on.

Although scientists have started to use
symplectic integration only recently, it is
not a new idea. In the 1950s René de
Vogalaére, a mathematician then at the

. ‘Will Pluto collide
with Neptune in a billion

These models demonstrate vividly how
chaotic the Solar System’s behaviour is.
Imagine a model of the Solar System
made up of little coloured lights zipping
around the Sun in elliptical orbits. Now
speed up time until the points of light
appear to be smeared into nine elliptical
rings, with Neptune’s orbit overlapping
Pluto’s. The first thing you notice is that
the planets’ perihelia—the points at

can easily simulate.

Now speed up time even more, so
that a million years pass every sec-
ond. At this rate, Pluto orbits the
Sun 4000 times each second and
conventional computer methods
start to fail within a few seconds.
The measure of the shape of a plan-
et’s orbit is its eccentricity—the
narrower the ellipse, the greater
the eccentricity—and Pluto has the
most eccentric orbit of all the plan-
ets. Symplectic integration can
show how the cumulative effects of
the gravitational pull of each planet
on every other planet begin to
show up in changes in the shape of their
orbits. The eccentricity of Pluto’s orbit be-
gins to change erratically over the next
70 million years, leading to a 500-mil-
lion-kilometre change in its maximum
distance from the Sun.

Pluto’s  perihelion also behaves
strangely. Instead of steadily rotating, as
other planets’ perihelia do, it comes to a
halt, reverses, and finally swings back

years’ time? Surprisingly, the calculations clearly show the planets avoiding each other

University of Notre Dame in Indiana,
suggested rewriting formulae to preserve
symplectic angles at each step. But his
paper was rejected by a mathematical
journal and the idea was forgotten. In
1983, it was rediscovered independently
by Ronald Ruth at Lawrence Livermore
National Laboratory in California and
Feng Kang at the Chinese Acad-
emy of Sciences in Peking.

Since then, the study of sym-
plectic integration has gone from
strength to strength and the tech-
nique is giving scientists new
insights into the workings of
the Solar System. That chaotic
motion exists in the Solar System
was first suggested in 1988
by conventional computer calcu-
lations. But these were painfully
and unnecessarily slow, and
symplectic integrations can be
carried out in a fraction of the
time to simulate this chaos far
into the future. Scientists can
now model the entire lifespan of
the Solar System, thought to
be about 10 billion years, and
know that the model is reliable
because it obeys the laws of
symplectic geometry.
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which their elliptical orbits are closest
to the Sun—are not fixed, but rotate
slowly. This phenomenon, which is
known as perihelion precession, has been
known for around a century. The Earth’s
ellipse, for example, takes 112 000
years to rotate once—the sort of period
that conventional computer methods

—a phenomenon that has
yet to be explained’

and forth by an amount that varies every
34 million years. In addition, the tilt
of its orbit relative to the Earth’s, oscil-
lates chaotically between 14° and 17°,
like a spinning coin coming to rest. Jack
Wisdom of the Massachusetts
Institute of Technology, who calcu-
lated these figures, says the diver-
sity of Pluto’s motion seems to
be inexhaustible.

So will Pluto collide with Nep-
tune in a billion years’ time? Prob-
ably not. Surprisingly, the cal-
culations clearly show the planets
avoiding each other—a phenom-
enon that has yet to be explained.
The Solar System may behave cha-
otically, but it seems destined never
to look very different from the way
it is now. O
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