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We study the advection of passive tracers by traveling plane Rossby waves of finite amplitude. In
distinction with previous studies the nonlinearity of the wave field is taken into account in the first
order of perturbation theory by considering the Lagrangian transport by resonant wave triads. Using
the waves’ phases as new dynamical variables we reduce the problem to the study of a specific
one-and-a-half degree of freedom Hamiltonian system with nonharmonic modulation. By using a
symplectic integrator we study this system numerically and find an interesting series of bifurcations
of its phase portrait as the nonlinearity increases. As is standard in the systems of this type we
commonly see a chaotic sea with elliptic islands in the phase space, which means that in the physical
space the resonant triads give rise to chaotic mixing and ballistic transport, respectively. The
relevance of these results to the transport propertie@-pifine turbulence is discussed. 98
American Institute of Physic§S1070-663(198)02712-3

I. INTRODUCTION neglected, as well as the back-reaction of the particle motion
on the wave field, this is not the case for Rossby waaesl
Rossby waves characterize the response of a differersther waves in fluids In addition, unlike the case of charged
tially rotating fluid layer to small perturbations and, hence,particles in electrodynamics, the motion of the Lagrangian
represent one of the essential ingredients of large-scalgyid particles should satisfy specific global constraints such
quasi-two-dimensional atmosphere/ocean dynamics. Beings the conservation of circulation along a moving liquid con-
constantly present in the atmosphere and oceans these wayggr. These constraints have a drastic influence on the char-
influence tracer transport and, thus, a question arises abogter of the motiofi. Thus, a problem of self-consistency of
the behavior of Lagrangian particlésansporting the tracer  the kinematic description where the Lagrangian fluid par-
advected by a system of Rossby waves. The particle+icles are advected by a given wave configuration arises if
wave(s) interaction is traditionally studied in the plasma thjs |atteris notan exact solution of the wave-field evolution
physics example of charged particles in an electromagnetigquation. Although the authors of Refs. 5—7 were perfectly
field, and has become one of the archetypes of modern dyware of this fact, they limited their study to the kinematic
namical systems theofgee, e.g., Refs. 1) 2Much is known  aqpects of the problem, discarding the nonlinear wave inter-
about the transport and mixing properties of this systemy.iion even for relatively large wave amplitudes.
(cf. Refs. 3, 4. A natural extension of these results to geo- |+ should be emphasized that solving the above-
physical fluid dynamics problems was undertaken first inpentioned self-consistency problem for the Lagrangian
Ref. 5, where advection of a passive tracer by a pair ofansport by a flow evolving from an initial state consisting
Rossby waves propagating along a charinel, of the form ot 5 gystem of finite-amplitude Rossby waves would mean
sink(x—ctsinly] was investigated. The phenomenon of cha-gqyying the problem of beta-plane turbulence, which is, ob-
otic mixirjg was displayed an.d applicatio_ns to observed atVioust, impossible by analytical means. We may, however,
mospheric flows were consider@dChaotic transport by  ake a step forward toward realistic dynamics by introduc-
Rossby waves in a shear flow was later studied in Ref. 7. i, hertyrhatively the effects of nonlinear wave interactions
It should be stressed, however, that a crucial dlfferenc%nd, thus, pushing the inconsistency to longer titfeésthe
exists between the behavior of charged particles in an elegsqere1 in nondimensional units, wheeis the nondimen-
tromagnetic field and that of Lagrangian fluid particles. Nor-gional wave amplitude Our main focus will be on the bal-
mally, the dynamics of the former becomes nontrivial once ggic transport by the traveling plane Rossby waves—an ef-
certain threshold in wave amplitudes is passed. But, whilgg ot anal0gous to the electrostatic particle trapping in plasma
the nonlinear interaction of electromagnetic waves is weakg i discussed in Ref. 9. As was just said, instead of consid-
even for large wave amplitudes and, usually, may be safelking the advection by a pair of harmonic waves we take into
account the fact that in the leading order of the perturbation
dCorresponding author. Electronic mail: zeitlin@Imd.ens.fr theory in wave amplitude the two initial waves will generate
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a third one forming a resonant triad and all three will evolve @, =Q;t—k;-x, (5)

in time subject to a slow nonharmonic modulation. It is the )

advection by such resonant wave triads which we are inter'?i = 2(Ky.ky), € is the small parameter, and;=a;(7)
ested in that follows. The velocity field produced by resonantvherer=¢"'t is the slow modulation time, as a first-order
triads is spatially and time periodic. General conditions forapproximation to the regular perturbative expansion
anomalous transport in such systems were analyzed in Ref. W= e+ iyt

10, where it was shown that the flow should be not uniformly '

ergodic to be able to support ballistic advection. Below weof the solution of(1); then the integrability conditions for the
show that it is indeed the case for Rossby wave triads andext approximationy),, give modulation equations for the

that they do ballistically transport tracers. wave amplitudes,
Ja

Il. PRELIMINARIES: ROSSBY WAVES o 18,23,
DYNAMICS, AND RESONANT TRIADS a7

Below, we shall limit ourselves to one of the simplest da; 6
systems exhibiting Rossby waves, namely, a purely two- o Y28sdu ©®)
dimensional incompressible fluid motion in the plane tangent
to the rotating planet surfadee., 8-plane motion. The gen- @ — 3.2
eralizations to more realistic problemguasigeostrophic gr 139192

barotropic motion with a finite deformation radius, multilay-

ered or continuously stratified models, cf. Ref. 11, or spheriy\’hereyi » 1=1,2,3 are the interaction parameters,
cal geometry, cf. Ref. )2are straightforward. Thus, the Ko XKsg kyX K ki xKj
equation for the evolution of the streamfunctignof the NET T V2T YT (7)
two-dimensional velocity fieldh= (— dy/ dy,dupl x) is ! 2 3
oA oy and the cross product of two vectaasandb is defined as
— 4+ Iy A+ B —=0, (1) axb=a,by,—ayb,. Note that these equations result from
at X (6.1) of Ref. 13 after a change’+ 1— k? which corresponds

where B is the Coriolis parameterJ(A,B)=(9A/IX) to our choice(1) of the nondivergent planetary wave equa-
X (9B ay) — (dA1dy)(aBIox), A=a%dx>+3*/ay? and x  tion, in the terminology of Ref. 13. The solution B) may
=(x,y) are Cartesian coordinates on tglane. The linear be written in terms of elliptic functionésee, e.g., Ref. 37
part of this equation describes propagation of Rossby waves a —a, d a —a, s

of the formyy=a cos t—k-x+ ¢) with dispersion relation (1) =ay, dn(7l), - ag(7)=ag, sri7]x),

®

Ky as(7)=ag, cn(7«),
w=Q(kX,ky)=—,8E2. 2 _ _
where, without loss of generality, we have assumed that
Let us note in passing that a single harmonic wave of arbia,(0)=0. In terms of the initial amplitudes and interaction
trary amplitude is an exact solution @f). As is well known parameters, the modulusof the elliptic functions is given
(cf. e.g., the classical paper, Ref. 13 or),lih the lowest by
order of the perturbation expansion in wave amplitude the 2
) . . . a
Rossby waves' interactions are dominated by resonant triads. Kzzj
Let us be reminded that the resonant interactions appear aj,
naturally in the standard “two-timing” perturbative tech-
nique in the modulation theorgsee, e.g., Ref. 24The clas- The requirementk<<1 constrains the maximum value of
sical three-wave equations arise in the simplest version o®3,/a1,, this maximum depending on the triad. The modu-
this technique where a slow time dependence is introducelhtion period, which we call';, is equal to the perio( «)
only in the amplitudes of the basic harmonic waves, cf. Refsof the elliptic functions, where&K is the complete elliptic
13, 15, as it is sketched belda generalization of our results integral of the first kind. We should emphasize at this point
for the case of the full modulation equations including slowthat (3), (4), (8) do not specify an exact solution @f),
time dependence of the phases, i.e., spatial modulation, cljthough we do have that the initial energy and enstrophy of
e.g., Ref. 16, is also possible but will be not discussed ira resonant triad are exactly conserv@dhdeed, corrections

Y1

Y2

: (€)

what follows. containing combinational frequencies are necessarily gener-
Indeed, if one takes a triad of waves, ated, but they are small as the initial wave amplitudes are
3 small. One may take the smallness of the ratio
lﬂ1=§1 a; cos®;, 3 ~ maxT;) max 2m/Q;
=TT, T T K (10

satisfying the resonance conditions

_ where T;=2=/(); are the oscillation periods of the triad
Pyt P=Ps, VXL, @ components, as a rough criterion of applicability of the reso-

where nant triad description of the wave field generated by an ini-
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tially active pair of waves 1 and &f. (8)] in a nondegener- Ill. LAGRANGIAN TRANSPORT BY ROSSBY WAVES
ate casd); #0. (See the Figure Caption below for the values
of §in numerical calculation.

The following explicit parametrization of resonant triads

Lagrangian fluid particles advected by the flow obey the
equations of motion,

satisfying(4) will be used below. Consider a triangle formed . ay Y
by the resonant wave vectoks, i=1,2,3 and denote by X=-%y Yo (16)
the angle formed bk, andks; and by y that formed byk,
andks. The resonant conditiond) are equivalent to wherex(t) =[x(t),y(t)] is a particle position on the plane at
time t. These equations represent a “one-and-a-half’ degree
01+Q,=Q3, kyit+ky=ks, (1) of freedom Hamiltonian system that may be studied by stan-

and are invariant with respect to dilation of the wave vectorsdard methods oncg, the Hamiltonian, is known as a func-

[cf. (2)]. Hence, without loss of generality we may choosetIon of x, y, andt.

|ks|=1 and rewritg(11) in terms of the wave-vectors moduli . Before qonS|der|ng ad_vectmn _by a resonant triad, we
and polar angles as first summarize the dynamics ¢f6) in the presence of only

one or two harmonic waves.

oS @3=|kq|cos @1+ |ky|cOS @, For a single propagating harmonic waikb) is easily

_ _ _ integrated and gives simple oscillations of particles’ posi-
sin @3=1K4|sin @1+ [Kka|sin ¢, (12 tions. For a pair of propagating harmonic waves,
cos @3=|kq| " cos ¢+ |k, ! cos @,. =Ay cogQt—ky-X)+A; cogQyt—Ky-X), 17

Egs.(16) are also integrable, as the time dependence may be
eliminated by choosing the phasés , as new dynamical
P1=¢p3ta, @=y— @3, variables.[Note the difference between this case and the
nonintegrable case,

Then elementary trigonometry shows that

1 Cosa COSYy . )
B sifa+vy) siny sina s =A; sinky(x—c;t)sinl,y
pz=arcta siny sina (13 + A, sinky(x—cyt)sinlyy,
sina  siny treated in Ref. b These variables are defined on the toFés
but may be lifted to its universal cov&?. The change of
and . . ; :
variablesx —® is a good one if the matrix
sin y sin a
Ki|==——"—, |ko|]=———. 14 ki, ki
o= Sty kel sitary) 19 K=(k ky) 19
2, K2
Thus triad space corresponds to the triangle, Y
is nonsingular. This is true exactly in the interior of the triad
{(a,y):0sasm y<m a+ysm}. (19  triangle(15). In this case we get a system of equations,
We are partic_ularly inter_ested in triads that allow a wide fi>1=Ql+(klxk2)A2 sin®,,
range of physically consistent waves those witlk1 from (19)
(10). Of course,6—0 asB— = and ask— 1. However, we c'pzzgz_(klxkz)Al sin®,,

shall see that the interesting, anomalous transport modes = | , )
arise for small values of 8: and ask—1, the amplitudes which is an integrable canonical one-degree-of-freedom

a,(t) tend to periodic step functions, whose large gradientd@miltonian system with Hamiltonian
also destroy the modes we wish to study. Thus, we seek =0, ®,— 0,0, (k;Xk,)(A; cos®;+A, cosd,).

those triads that minimizg maxT;=2wk|; /k,, to allow the (20
greatest range g6 andaz  while retainings<1. The global  \ya call x physical spaceand ®=(®,,®,) phase space
minimum occurs aty, =0.66, o, =0.97. They are related by

There is one family of triads that seem particularly in- _
teresting in their own right. These are the isosceles triads x=(K")t—. (21
with two values oflk| equal. There are three such families: |f g particle hasx(t) bounded we call ifrozen if it is not
with =7y, a=7—a—vy, andy=m—a—vy. Inthese cases hounded, but lim_.. x(t)/t=0, we say it isdiffusive[and,
x=0 and the elliptic functiong8) reduce to the trigono- generally,x(t)~t"?]; if a nonzero lim ... x(t)/t exists, we
metric functionsa;=a; , a;=ay sin(r), a;=a3 =cos).  say the motion isballistic. Ballistic motion corresponds to
However, this case is degenerate in the sense that the thighrticles being advected with, on average, a constant veloc-
wave vector is always vertical: it hds=0, and hence its ity; we call these particleshooters In general, the situation
wave has frequency 0 representing a plane-par@@sinu-  wherex(t)~t® with a# 3 is known as anomalous diffusion.

soidal flow on theB plane(a Kolmogorov flow. Thus, the For advection by a pair of harmonic wavgsgs. (17),
triads in question should be relevant, e.g., in studies of sta-9), (20)], the motion in phase space is along the isoener-
bility of this flow. getic curvesH = const with an averagever ® e T?) veloc-
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D= Q4+ (kg XKo)[an(t)sin Do+ ag(t)sin( @+ D,)],
(22
o= 0,— (kg XKy)[a(t)sin @+ ag(t)sin(d,+d,)],

H=Q,®,—Q,P;—(k;Xky)[as(t)cosP,+ay(t)
Xcos®,+asz(t)cod P+ Dy)], (23

and represent a one-and-a-half degree of freedom dynamical
system that is not integrable due to the explicit time depen-
dence of thea;. Note that the modulatiom;(t), although
periodic with periodT,,, is not harmonic, except for the
degenerate case of the isosceles triadis(6), (7)]. A stan-
dard method of investigation for this type of dynamical sys-
tem is a numerical integration and a study of the phase por-
/\ trait resulting from the iterations of the Poincanapf, over
5 = 5 3 y 5 : the modulation periody, . Below we present the results of
such analysis for selected triads. It is difficult to explore
systematically the whole parameter space of this model—
FIG. 1. The contours qﬂ=const inthe @,®,) plane for a pair of waves  \yhile the triads’ geometry is defined byand a [see(13),
ki=(L1); k=(1.2) with A =1, A;=0.5, f=0.8. (14)], there are still two additional parameters {82),
namely, the amplitude ratitalgola10 (we may fix a;,=1
without a loss of generalilyand 8. Bearing in mind the
ity Q=(£1,0,), which gives no averag@ver®) displace-  consistency condition saying that the oscillation periods have
ment in physical space. However, two different situationsto be much smaller than the modulation period, we have
may take place according to the topology of the isoenergetighosen to work in the vicinity of the poing, =0.66, a,
curves, which is determined by the interplay of the linear and=0.97, which provides a global minimum in triad space of
nonlinear terms if20). In the case when the linear term is the shortest oscillation period normalized By
dominating the isolines dfl are open and each point in the In general, for the nonintegrable systé&®?) one might
phase space is moving with a velocity close to the averagexpect a chaotic sea with, possibly, some islands of regular
velocity. In physical space any particle therefore remaingehavior as a typical phase portrait. Bs— is an inte-
close to its initial position and is frozen. In the case whengrable limit of (22), one might also expect that for any triad
linear and nonlinear terms are comparable, fixed points, eachh more and more regular pattern of dynamical behavior
with a surrounding island of periodic orbitslliptic island$  emerges with increasing As in the integrable case of a pair
appear in the phase spa¢gee Fig. 1. A fixed pointin®  of waves, the presence of elliptic islands would signify a
space, by virtue of5), corresponds to a ballistically advected presence of shooters. Indeed, suppose the Poimeape p:
particle in physical space. It is clear that the whole elliptic T2, T2 of (22) has a perioah fixed pointd, with a winding
island around a given fixed point will be also ballistically numberm about the torus, and is the discrete time. This
advected. The relative number of shooters is, thus, defineg,cans that in terms of the lift md on R?, we have
by the fraction of phase space occupied by the elliptic is-
lands. All other points moving a_Iong the open orbits |r1 phas_e 72((1)0) —®,+27m, (24)
space stay close to the origin in the physical space; but, in
order to maintain zero average velocity, the cloud of “nor-gnq the distance traveled in tinmer,, in physical space is
mal” points must drift in the direction opposite to the shoot-
ers’ motion. x=K™1.(Q@nTy—27m)+x(0). (25)
The above-described ballistic advection phenomenon
was discussed in plasma physics in Ref. 9. In the preseriience, the fixed points and the regular orbits around them
context, if confirmed, it would imply interesting conse- belonging to the stability islands having the same average
guences as to the transport of passive scalars in geophysiaginding number correspond to shooters. Chaotic orbits cor-
flows. However, the condition for the appearance of shootersespond to slow diffusion. The presence of stability islands
means that the nonlinearity is strong and, thus, the questioresults in a slow drift in physical space of the diffusive cloud
of consistency described in the Introduction arises. We thereaway from the shooters, so as to compensate for the fast
fore make the next step and consider a resonant triad engeescape of the shooters and to keep the average winding num-
dered by an initial pair of waves. That is, we consider aber zero.
streamfunction of the fornB) with the amplitudes satisfying The above-described scenario is an illustration of the
(8). The resonance conditio@) allows us to eliminate the general analysis of Ref. 10, where it was shown that a nec-
third phased®; and, again, to get a Hamiltonian system de-essary condition of the ballistic advection in space and time
fined in the phase spacé(,®,). The equations of motion periodic velocity fields is the nonergodiciiy.e., the pres-
and the Hamiltonian are, respectively, ence of stability islangsof the flow.
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IV. NUMERICAL PROCEDURE AND RESULTS 1 i —

We wish to follow many orbits of22) for long times at LSS 3os
many different parameter values. By using a symplectic iﬁ”g’gﬁ ii"“;
integrator:®°we ensure that the computed Poincarapf, *§g§"’“ ]
is exactly(up to roundoff error area preserving and that no ;2;;§ .,:21’;;
spurious non-Hamiltonian-like dynamics or bifurcations will ";’;‘5‘ ;}"sﬁs;
be observed. As the systef@2) is nonautonomous, it is % 252

clearest to derive the symplectic integrator in the extendec.s

phase spaced;,®,,{,py) in which é=t. The extended

Hamiltonian isﬁ=H+p§, and this Hamiltonian may he

split into four pieces, each of which is integrable:
H=Hy+H+Hz+H,,

Hi=Q,®,— (kg xky)as(t)cosd,,

H,=—Q,®,—(k;Xky)a;(t)cosd,, o o
Hi=—(kyxkp)as(t)cod®;+ D,), T
.9
H,= Pe- 1 E:S
Writing the time steps as, e.gb—®’, the timeAt flows of FIG. 2. The oh ait ing ten different traiectories of the triad
. . . L. € phase portralt representing ten difrerent trajectories o e tria
these Hamiltonians are y=0.7,a=1 atB=2 after 2000T,, . The modulation period,,=47.14.

H,: Cbi:q)ﬁ At[Ql-i- (klxkz)az(g)sin q)z] The wave periodd; are 5.66, 2.74, 5.32, respectively.
H2: (bé:(bz"‘At[Qz_(klxkz)al(g)sin (I)l]
) ) ticles. Interestingly, these islands do not arise from a reso-
Hy: ®,=®;+c, P=P,—c, nance of the knowB— o integrable limit. This makes them
_ . difficult to predict or account for analyticallfThey may be
c=Atlkyxkz)ag(£)sin(®y+ Po), remnants of sometherintegrable limit of the model, even if
Hy: E'=E&+AtL this limit is not reached through physically consistent values

. . of the parameterk.
For an algorithm with second-order accuracy, we compose : .
For reasons of physical consistency of the model we do

these flows in the pattern 1, 2, 3, 4, 4, 3, 2, 1. Notice how the . ;
Hamiltonian spliting has the effect of “freezing” the ex- hot show the subsequent bifurcations that take place beyond

plicit time dependence dfl during the integration. To com- the limit T;~Ty, although they may be interesting in them-

pute the Poincarenap, we take an integer number of time
steps(usually 50 or 10D per periodT,, of the forcing func-

tions a;(t). As most orbits are chaotic and cannot be fol- F ;é,f-'; ;@%{’gg’:;g@;if:kﬁ
: Mt RO Sl
lowed accurately anyway, we believe that second-order ac  [&3&%2 ,.«ﬂ'lixj;;’éfr:‘e?,z_giﬁ
curacy is sufficient, although we have, of course, checkec KXs¥ps S Rt T
LRI iy
et ¥4 YA o

that our results do not depend on the time shp oo
We use the explicit parametrization of triads given by
(13), (14). The elliptic functions defining the time depen-
dence ofa; are also calculated numerically using a standard
algorithm?° 0.6
A bifurcation sequence for the phase portrait of the triad
with y=0.7, =1 is represented in Figs. 2—6 fBrdecreas-
ing from 2 to 0.5. The initial amplitud330 was chosen to be
0.66 (quite close to its allowable maximum in this case of ** -,"'” A
0.67 in order to maximizeT,, . The sequence is character-  [:

:
o,

7y
'G&c- A
5,
™,

2
T

.&..
it

s jﬁ'\'ﬂ&v {;;:

) » =™ " X 3 $ed 7 8 a"”" iy Svy e ¢
ized by a regular ergoditi.e., space filling but not mixing v?}:fgﬁjﬁé&{‘ﬁ;‘ﬁ’;}ﬁ‘k »55‘5;:55’:,\,3..{;, 23 -13?;!;}2;.33
: . . . /- T T Lop K ot bd SB Ta At Y o i T 0 R
behavior for larges, as expectedFig. 2), which gives place L ‘é@%’sﬁi’q t},’f@{"#@&@aﬁ%‘}&%@k
. . ) . 0.2 3 S L B R T v . ::"...., B 3 < e
to chaogFig. 3) by more and more vigorous distortion of the A A T AR e M It Lupin okl

S LS R SR A Sk TR SIS Rl % et
phase trajectories and, then, to the birth of multiple relatively A RSl 7 %ﬁ Ma?f 'zf‘;:‘*
small and/or narrow island§=ig. 4). These primary islands :
disappear giving rise to chadBig. 5) from which secondary
“fat” islands are born(Fig. 6). It is these fat islands that give
rise to a relatively large numbers of shooters and a COITer|g, 3. The phase portrait of the triag=0.7, a=1 at B=1 after
sponding large amount of anomalous diffusion of tracer par2000 Ty, ; Ty, =47.14. The wave periodg are 11.33, 5.49, 10.64, respec-

tively.
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FIG. 4. The phase portrait of the triag)=0.7, =1 at 8=0.75 after ~ FIG. 6. The phase portrait of the triag=0.7, «=1 at §=0.5 after

2000 Ty ; Tw=47.14. The wave periods, are 15.11, 7.32, 14.19, respec- 2000 Ty ; Ty=47.14. The wave periodg are 22.66, 10.98, 21.27, respec-
tively. tively. An elliptic trajectory inside the island is also shown.

selves. A corresponding evolution of the cloud of tracer parserved. Although for the above-explained reasons we did not
ticles in the physical space is shown in Figs. 7-9. A similarexplore the whole of parameter space and, thus, are unable to
scenario was observed for other triads closeyto, «, , estimate a measure of island-bearinge., shooter-
although the number of primary narrow islands varies. Wesupporting triads we, nevertheless, see that these triads and,
also remark that the presence or absence of elliptic islands Isence, the phenomenon of the ballistic transport, are com-
sensitive to the rati@z_ /a; . Another generic scenario con- mon. At the same time, a chaotic mixing related to the cha-
sisting in a direct transition to quasiuniform chaos from theotic part of the phase portrait is universal. It should be noted
regular behavior while decreasing was also widely ob- that elliptic islands appear when nonlinearity is well devel-
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FIG. 5. The phase portrait of the triagg=0.7, a=1 at 8=0.7 after FIG. 7. The dispersion of tracer particles, initially uniformly distributed in
2000 Ty, ; Ty=47.14. The wave periodE, are 16.18, 7.84, 15.21, respec- the a (27)2 box in the phase space after 500 modulation periods; the initial
tively. box is also shown. The triad is the same as in Fig. 2.
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for chaotic mixing corresponds to higher values@f [kil equal to 0.3, 1, 1, respectively. Hege-2.

A totally different bifurcation sequence exhibiting a

standard scenarif., e.g., Ref. 1 of chaotic zones appear-

ing at the separatrix crossing and then further developing vi@&riads of Rossby waves. However interesting by themselves,
resonance overlap is observed for the isosceles triads, Figke question arises as to the relevance of these results for
10-12. As mentioned earlier, this is a degenerate case ingarticle advection by the full flow where an initial wave triad

sense that modulation becomes harmonic. From the point @&fxcites, at a longer time scale, a broad spectrum of waves. It

view of transport it is degenerate, too, as one of the wavégs true that the total vorticity conservation following from
vectors of an isosceles triad is necessarily vertical, which1),

means that one of the triad’s components is, in fact, a space-
periodic zonal flow carrying Lagrangian particles to infinity.

w
—_— = +
5p =0 w=Ay+py, (26
V. DISCUSSION
Thus, we have shown that chaotic mixing accompanied
in many cases by ballistic advection of a fraction of tracer

particles characterize the Lagrangian transport by resonan
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FIG. 9. The dispersion of tracer particles, initially uniformly distributed in

the (27)? box in the phase space after 500 modulation periods. The triad i$¥IG. 11. The phase portrait of the isosceles triad with wave-vectors moduli
the same as in Fig. 6.

|ki| equal to 0.3, 1, 1, respectively. Hefe=1.
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g . . Moo it et ¥ 2 . work the problem of diffusion by thg ensembles of. drift
% 1 Y \\-*..V. ?3’;5‘,1 .’;3;,-"‘ ; :;:f::’ (=Rossby waves was studied, neglecting the modulation of
?,&“,.A ‘... ‘..' \;‘;'&: .. :“}:3‘-:,.:' the wave amplitudecf. Refs. 4, 26. The transport by re-
;72 N . . \ :.-..:.i-;.-{,,’ Mg laying triads of n_onllnear Ros_sby waves f(_)und in the present
o.op Se. K s kY \ a-.";':‘é..'-'-‘.*.“'.-- study may provide a dynamical mechanism for anomalous
b £27, ,:;‘/' AN S {.'“;3:;{...; diffusion. Note that if the role of the broad spectrum of
pie e/ \\ .?' fs:,: .;,;ce,ff’:‘z':sasz’f waves generated at later times by the initial triad may be
S H B .}'fz.‘..:“ ,.: S assimilated to turbulent diffusion the ballistic transport may
061 s 'y persist in the resulting advection—diffusion equation accord-
% .“{‘ H ing to the general analysis of Ref. 27.
PN '3‘ Let us finally mention that the same mechanism exists in
PSS [ stratified turbulence where vortices coexist with internal
041 . .;.“g.'.". , gravity waves. In the Boussinesq approximation valid for
1 -~ ,-:-!.-2:,},‘:":' g ‘t. \ short enough waves, where the effects of the wave-amplitude
i § / {.\ﬁs{:s‘.é";?f'f}-t‘,’:é{s,‘{ AN growth with height are neglected, the nonlinear gravity
] FR | S TSN -..:f,,l.ﬁ‘f;- ¢ .'.:‘\ waves propagating in the vertical plane obey the following
N oYy R K R tl':'.:"-’-"‘a..;'.‘ S equations(the equations of the stratified turbulence in the
.‘s\ K} “ ;l.:;: .. ;,o.‘}-':-' 3.-;:33 vertical plang:
LYY N e e e oAy i
emiody . . i I 1 otk ,'mg,_"_ - R
0.2 }4 t 04:' 0.8 1 at +J(l//,Alﬂ)+ IX O’
\Fkl(fe 1ﬁ.aI'I'tr;eorJ:?;aie:Lporr;rsai:e gtfl \52? iss;c;l%s 5triad with wave-vectors moduli 9E , p (28)
il eq .1, 1, resp y I = N2 —=0,

where ¢ is the streamfunction of the velocity field in the

where D/Dt denotes the Lagrangian derivative, is not re-Vertical plane,¢ is the buoyancy variable is the Brunt—
spected by(3), (6), which explains the fact that we observe Vaisda frequency(see e.g., Ref. 22The dispersion relation
chaotic behavior with a nonpiecewise constant total vorticityfor the linear waves following fron(i28) is

(cf. Ref. 8, where it was shown that a piecewise-constant
profile of vorticity is a necessary condition for chaos in k_)z(
vorticity-conserving time-periodic flowsAnother constraint

following from (26) is that as total vorticity of any Lagrang- and allows for resonant triadsee, e.g., Ref. 28 for the dis-
ian (=trace) particle is constant its displacement in the cussion of the role of resonant triads in ocean dynamics
direction is limited from above by Thus, an analysis similar to that made above for the Rossby
_ waves may be done in this case, too, with similar conclu-
V2= y1=B (A1~ Agy), (27) Y

sions.

which implies the existence of an upper limit of possible
dispersion in this direction determined by the magnitude ofACKNOWLEDGMENTS
the variations of relative vorticity of the flow. Thus, the P  thi K ; d while R. M. and V. Z
(nonhorizontal ballistic advection at a very long time scale alrth t ';’ V\:m Wzs per olrmg W fl € h. M. ar? - |
(>€ 1) in the full flow is questionable. Nevertheless, we \éve_re visiting tCe sba%c eL‘j"t_O” n_stltgtelggé (ej _at err1nat|ca
believe that the ballistic transport we have found should con: C|en<i(:/|s E?]t am r'_gi mveLsny n 40 ungg t e_pr(i-
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