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We study the advection of passive tracers by traveling plane Rossby waves of finite amplitude. In
distinction with previous studies the nonlinearity of the wave field is taken into account in the first
order of perturbation theory by considering the Lagrangian transport by resonant wave triads. Using
the waves’ phases as new dynamical variables we reduce the problem to the study of a specific
one-and-a-half degree of freedom Hamiltonian system with nonharmonic modulation. By using a
symplectic integrator we study this system numerically and find an interesting series of bifurcations
of its phase portrait as the nonlinearity increases. As is standard in the systems of this type we
commonly see a chaotic sea with elliptic islands in the phase space, which means that in the physical
space the resonant triads give rise to chaotic mixing and ballistic transport, respectively. The
relevance of these results to the transport properties ofb-plane turbulence is discussed. ©1998
American Institute of Physics.@S1070-6631~98!02712-3#
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I. INTRODUCTION

Rossby waves characterize the response of a diffe
tially rotating fluid layer to small perturbations and, henc
represent one of the essential ingredients of large-s
quasi-two-dimensional atmosphere/ocean dynamics. B
constantly present in the atmosphere and oceans these w
influence tracer transport and, thus, a question arises a
the behavior of Lagrangian particles~transporting the tracer!
advected by a system of Rossby waves. The partic
wave~s! interaction is traditionally studied in the plasm
physics example of charged particles in an electromagn
field, and has become one of the archetypes of modern
namical systems theory~see, e.g., Refs. 1, 2!. Much is known
about the transport and mixing properties of this syst
~cf. Refs. 3, 4!. A natural extension of these results to ge
physical fluid dynamics problems was undertaken first
Ref. 5, where advection of a passive tracer by a pair
Rossby waves propagating along a channel@i.e., of the form
sink(x2ct)sin ly# was investigated. The phenomenon of ch
otic mixing was displayed and applications to observed
mospheric flows were considered.6 Chaotic transport by
Rossby waves in a shear flow was later studied in Ref. 7

It should be stressed, however, that a crucial differe
exists between the behavior of charged particles in an e
tromagnetic field and that of Lagrangian fluid particles. N
mally, the dynamics of the former becomes nontrivial onc
certain threshold in wave amplitudes is passed. But, w
the nonlinear interaction of electromagnetic waves is we
even for large wave amplitudes and, usually, may be sa

a!Corresponding author. Electronic mail: zeitlin@lmd.ens.fr
3181070-6631/98/10(12)/3185/9/$15.00
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neglected, as well as the back-reaction of the particle mo
on the wave field, this is not the case for Rossby waves~and
other waves in fluids!. In addition, unlike the case of charge
particles in electrodynamics, the motion of the Lagrang
fluid particles should satisfy specific global constraints su
as the conservation of circulation along a moving liquid co
tour. These constraints have a drastic influence on the c
acter of the motion.8 Thus, a problem of self-consistency o
the kinematic description where the Lagrangian fluid p
ticles are advected by a given wave configuration arise
this latteris notan exact solution of the wave-field evolutio
equation. Although the authors of Refs. 5–7 were perfec
aware of this fact, they limited their study to the kinema
aspects of the problem, discarding the nonlinear wave in
action even for relatively large wave amplitudes.

It should be emphasized that solving the abov
mentioned self-consistency problem for the Lagrang
transport by a flow evolving from an initial state consistin
of a system of finite-amplitude Rossby waves would me
solving the problem of beta-plane turbulence, which is, o
viously, impossible by analytical means. We may, howev
make a step forward toward realistic dynamics by introd
ing perturbatively the effects of nonlinear wave interactio
and, thus, pushing the inconsistency to longer times~of the
ordere21 in nondimensional units, wheree is the nondimen-
sional wave amplitude!. Our main focus will be on the bal
listic transport by the traveling plane Rossby waves—an
fect analogous to the electrostatic particle trapping in plas
first discussed in Ref. 9. As was just said, instead of con
ering the advection by a pair of harmonic waves we take i
account the fact that in the leading order of the perturbat
theory in wave amplitude the two initial waves will genera
5 © 1998 American Institute of Physics

AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3186 Phys. Fluids, Vol. 10, No. 12, December 1998 Dupont, McLachlan, and Zeitlin
a third one forming a resonant triad and all three will evo
in time subject to a slow nonharmonic modulation. It is t
advection by such resonant wave triads which we are in
ested in that follows. The velocity field produced by reson
triads is spatially and time periodic. General conditions
anomalous transport in such systems were analyzed in
10, where it was shown that the flow should be not uniform
ergodic to be able to support ballistic advection. Below
show that it is indeed the case for Rossby wave triads
that they do ballistically transport tracers.

II. PRELIMINARIES: ROSSBY WAVES
DYNAMICS, AND RESONANT TRIADS

Below, we shall limit ourselves to one of the simple
systems exhibiting Rossby waves, namely, a purely tw
dimensional incompressible fluid motion in the plane tang
to the rotating planet surface~i.e.,b-plane motion!. The gen-
eralizations to more realistic problems~quasigeostrophic
barotropic motion with a finite deformation radius, multila
ered or continuously stratified models, cf. Ref. 11, or sph
cal geometry, cf. Ref. 12! are straightforward. Thus, th
equation for the evolution of the streamfunctionc of the
two-dimensional velocity fieldv5(2]c/]y,]c/]x) is

]Dc

]t
1J~c,Dc!1b

]c

]x
50, ~1!

where b is the Coriolis parameter,J(A,B)5(]A/]x)
3(]B/]y)2(]A/]y)(]B/]x), D5]2/]x21]2/]y2 and x
5(x,y) are Cartesian coordinates on theb plane. The linear
part of this equation describes propagation of Rossby wa
of the formc5a cos (vt2k–x1w) with dispersion relation

v5V~kx ,ky!52b
kx

k2 . ~2!

Let us note in passing that a single harmonic wave of a
trary amplitude is an exact solution of~1!. As is well known
~cf. e.g., the classical paper, Ref. 13 or 11!, in the lowest
order of the perturbation expansion in wave amplitude
Rossby waves’ interactions are dominated by resonant tri
Let us be reminded that the resonant interactions ap
naturally in the standard ‘‘two-timing’’ perturbative tech
nique in the modulation theory~see, e.g., Ref. 14!. The clas-
sical three-wave equations arise in the simplest version
this technique where a slow time dependence is introdu
only in the amplitudes of the basic harmonic waves, cf. Re
13, 15, as it is sketched below~a generalization of our result
for the case of the full modulation equations including slo
time dependence of the phases, i.e., spatial modulation
e.g., Ref. 16, is also possible but will be not discussed
what follows!.

Indeed, if one takes a triad of waves,

c15(
i 51

3

ai cosF i , ~3!

satisfying the resonance conditions

F11F25F3 , ;x,t, ~4!

where
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F i5V i t2k i•x, ~5!

V i5V(kxi
,kyi

), e is the small parameter, andai5ai(t)
wheret5e21t is the slow modulation time, as a first-orde
approximation to the regular perturbative expansion

c5ec11e2c21¯ ,

of the solution of~1!; then the integrability conditions for the
next approximation,c2 , give modulation equations for th
wave amplitudes,

]a1

]t
5g1a2a3 ,

]a2

]t
5g2a3a1 , ~6!

]a3

]t
5g3a1a2 ,

whereg i , i 51,2,3 are the interaction parameters,

g15
k23k3

k1
2 , g25

k33k1

k2
2 , g35

k13k2

k3
2 , ~7!

and the cross product of two vectorsa and b is defined as
a3b5axby2aybx . Note that these equations result fro
~6.1! of Ref. 13 after a changek i

211→k i
2 which corresponds

to our choice~1! of the nondivergent planetary wave equ
tion, in the terminology of Ref. 13. The solution of~6! may
be written in terms of elliptic functions~see, e.g., Ref. 17!:

a1~t!5a10
dn~tuk!, a2~t!5a20

sn~tuk!,

~8!
a3~t!5a30

cn~tuk!,

where, without loss of generality, we have assumed t
a2(0)50. In terms of the initial amplitudes and interactio
parameters, the modulusk of the elliptic functions is given
by

k25
a30

2

a10

2 Ug1

g2
U. ~9!

The requirementk,1 constrains the maximum value o
a30

/a10
, this maximum depending on the triad. The mod

lation period, which we callTM , is equal to the periodK(k)
of the elliptic functions, whereK is the complete elliptic
integral of the first kind. We should emphasize at this po
that ~3!, ~4!, ~8! do not specify an exact solution of~1!,
although we do have that the initial energy and enstrophy
a resonant triad are exactly conserved.13 Indeed, corrections
containing combinational frequencies are necessarily ge
ated, but they are small as the initial wave amplitudes
small. One may take the smallness of the ratio

d5
max~Ti !

TM
5

max 2p/V i

K~k!
, ~10!

where Ti52p/V i are the oscillation periods of the tria
components, as a rough criterion of applicability of the re
nant triad description of the wave field generated by an
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tially active pair of waves 1 and 3@cf. ~8!# in a nondegener-
ate caseV iÞ0. ~See the Figure Caption below for the valu
of d in numerical calculations.!

The following explicit parametrization of resonant tria
satisfying~4! will be used below. Consider a triangle forme
by the resonant wave vectorsk i , i 51,2,3 and denote bya
the angle formed byk1 andk3 and byg that formed byk2

andk3 . The resonant conditions~4! are equivalent to

V11V25V3 , k11k25k3 , ~11!

and are invariant with respect to dilation of the wave vect
@cf. ~2!#. Hence, without loss of generality we may choo
uk3u51 and rewrite~11! in terms of the wave-vectors modu
and polar angles as

cosw35uk1ucosw11uk2ucosw2 ,

sin w35uk1usin w11uk2usin w2, ~12!

cosw35uk1u21 cosw11uk2u21 cosw2 .

Then elementary trigonometry shows that

w15w31a, w25g2w3 ,

w35arctanS 1

sin~a1g!
2

cosa

sin g
2

cosg

sin a

sin g

sin a
2

sin a

sin g

D ~13!

and

uk1u5
sin g

sin~a1g!
, uk2u5

sin a

sin~a1g!
. ~14!

Thus triad space corresponds to the triangle,

$~a,g!:0<a<p,g<p,a1g<p%. ~15!

We are particularly interested in triads that allow a wi
range of physically consistent waves those withd!1 from
~10!. Of course,d→0 asb→` and ask→1. However, we
shall see that the interesting, anomalous transport mo
arise for small values ofb; and ask→1, the amplitudes
ai(t) tend to periodic step functions, whose large gradie
also destroy the modes we wish to study. Thus, we s
those triads that minimizeb maxTi52puku i /kxi

, to allow the
greatest range ofb anda30

while retainingd,1. The global
minimum occurs atg* 50.66,a* 50.97.

There is one family of triads that seem particularly i
teresting in their own right. These are the isosceles tri
with two values ofuku equal. There are three such familie
with a5g, a5p2a2g, andg5p2a2g. In these cases
k50 and the elliptic functions~8! reduce to the trigono-
metric functions a15a10

, a25a20
sin(t), a35a30

5cos(t).
However, this case is degenerate in the sense that the
wave vector is always vertical: it haskx50, and hence its
wave has frequency 0 representing a plane-parallel~co!sinu-
soidal flow on theb plane~a Kolmogorov flow!. Thus, the
triads in question should be relevant, e.g., in studies of
bility of this flow.
Downloaded 03 Feb 2003 to 129.240.124.130. Redistribution subject to 
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III. LAGRANGIAN TRANSPORT BY ROSSBY WAVES

Lagrangian fluid particles advected by the flow obey t
equations of motion,

ẋ52
]c

]y
, ẏ5

]c

]x
, ~16!

wherex(t)5@x(t),y(t)# is a particle position on the plane a
time t. These equations represent a ‘‘one-and-a-half’’ deg
of freedom Hamiltonian system that may be studied by st
dard methods oncec, the Hamiltonian, is known as a func
tion of x, y, andt.

Before considering advection by a resonant triad,
first summarize the dynamics of~16! in the presence of only
one or two harmonic waves.

For a single propagating harmonic wave~16! is easily
integrated and gives simple oscillations of particles’ po
tions. For a pair of propagating harmonic waves,

c5A1 cos~V1t2k1•x!1A2 cos~V2t2k2•x!, ~17!

Eqs.~16! are also integrable, as the time dependence ma
eliminated by choosing the phasesF1,2 as new dynamical
variables.@Note the difference between this case and
nonintegrable case,

c5A1 sin k1~x2c1t !sin l 1y

1A2 sin k2~x2c2t !sin l 2y,

treated in Ref. 5#. These variables are defined on the torusT2

but may be lifted to its universal coverR2. The change of
variablesx °F is a good one if the matrix

K5S k1x
k1y

k2x
k2y

D ~18!

is nonsingular. This is true exactly in the interior of the tria
triangle ~15!. In this case we get a system of equations,

Ḟ15V11~k13k2!A2 sin F2 ,
~19!

Ḟ25V22~k13k2!A1 sin F1 ,

which is an integrable canonical one-degree-of-freed
Hamiltonian system with Hamiltonian

H5V1F22V2F12~k13k2!~A1 cosF11A2 cosF2!.
~20!

We call x physical space, and F5(F1 ,F2) phase space.
They are related by

x5~K21V!t2F. ~21!

If a particle hasx(t) bounded we call itfrozen; if it is not
bounded, but limt→` x(t)/t50, we say it isdiffusive @and,
generally,x(t);t1/2#; if a nonzero limt→` x(t)/t exists, we
say the motion isballistic. Ballistic motion corresponds to
particles being advected with, on average, a constant ve
ity; we call these particlesshooters. In general, the situation
wherex(t);ta with aÞ 1

2 is known as anomalous diffusion
For advection by a pair of harmonic waves@Eqs. ~17!,

~19!, ~20!#, the motion in phase space is along the isoen
getic curvesH5const with an average~over FPT2! veloc-
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ity V5(V1 ,V2), which gives no average~overF! displace-
ment in physical space. However, two different situatio
may take place according to the topology of the isoenerg
curves, which is determined by the interplay of the linear a
nonlinear terms in~20!. In the case when the linear term
dominating the isolines ofH are open and each point in th
phase space is moving with a velocity close to the aver
velocity. In physical space any particle therefore rema
close to its initial position and is frozen. In the case wh
linear and nonlinear terms are comparable, fixed points, e
with a surrounding island of periodic orbits~elliptic islands!
appear in the phase space.~See Fig. 1.!. A fixed point in F
space, by virtue of~5!, corresponds to a ballistically advecte
particle in physical space. It is clear that the whole ellip
island around a given fixed point will be also ballistical
advected. The relative number of shooters is, thus, defi
by the fraction of phase space occupied by the elliptic
lands. All other points moving along the open orbits in pha
space stay close to the origin in the physical space; bu
order to maintain zero average velocity, the cloud of ‘‘no
mal’’ points must drift in the direction opposite to the shoo
ers’ motion.

The above-described ballistic advection phenome
was discussed in plasma physics in Ref. 9. In the pre
context, if confirmed, it would imply interesting cons
quences as to the transport of passive scalars in geophy
flows. However, the condition for the appearance of shoo
means that the nonlinearity is strong and, thus, the ques
of consistency described in the Introduction arises. We th
fore make the next step and consider a resonant triad en
dered by an initial pair of waves. That is, we consider
streamfunction of the form~3! with the amplitudes satisfying
~8!. The resonance condition~4! allows us to eliminate the
third phaseF3 and, again, to get a Hamiltonian system d
fined in the phase space (F1 ,F2). The equations of motion
and the Hamiltonian are, respectively,

FIG. 1. The contours ofH5const in the (F1 ,F2) plane for a pair of waves
k15(1,1); k25(1,2) with A10

51, A20
50.5, b50.8.
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Ḟ15V11~k13k2!@a2~ t !sin F21a3~ t !sin~F11F2!#,
~22!

Ḟ25V22~k13k2!@a1~ t !sin F11a3~ t !sin~F11F2!#,

H5V1F22V2F12~k13k2!@a1~ t !cosF11a2~ t !

3cosF21a3~ t !cos~F11F2!#, ~23!

and represent a one-and-a-half degree of freedom dynam
system that is not integrable due to the explicit time dep
dence of theai . Note that the modulationai(t), although
periodic with periodTM , is not harmonic, except for the
degenerate case of the isosceles triads@cf. ~6!, ~7!#. A stan-
dard method of investigation for this type of dynamical sy
tem is a numerical integration and a study of the phase p
trait resulting from the iterations of the Poincare´ map f P over
the modulation periodTM . Below we present the results o
such analysis for selected triads. It is difficult to explo
systematically the whole parameter space of this mode
while the triads’ geometry is defined byg and a @see~13!,
~14!#, there are still two additional parameters in~22!,
namely, the amplitude ratioa30

/a10
~we may fix a10

51
without a loss of generality! and b. Bearing in mind the
consistency condition saying that the oscillation periods h
to be much smaller than the modulation period, we ha
chosen to work in the vicinity of the pointg* 50.66, a*
50.97, which provides a global minimum in triad space
the shortest oscillation period normalized byb.

In general, for the nonintegrable system~22! one might
expect a chaotic sea with, possibly, some islands of reg
behavior as a typical phase portrait. Asb→` is an inte-
grable limit of ~22!, one might also expect that for any tria
a more and more regular pattern of dynamical behav
emerges with increasingb. As in the integrable case of a pa
of waves, the presence of elliptic islands would signify
presence of shooters. Indeed, suppose the Poincare´ map f P:
T2→T2 of ~22! has a periodn fixed pointF0 with a winding
numberm about the torus, andn is the discrete time. This
means that in terms of the lift mapf̃ P on R2, we have

f̃ P
n~F0!5F012pm, ~24!

and the distance traveled in timenTM in physical space is

x5K21
–~VnTM22pm!1x~0!. ~25!

Hence, the fixed points and the regular orbits around th
belonging to the stability islands having the same aver
winding number correspond to shooters. Chaotic orbits c
respond to slow diffusion. The presence of stability islan
results in a slow drift in physical space of the diffusive clo
away from the shooters, so as to compensate for the
escape of the shooters and to keep the average winding n
ber zero.

The above-described scenario is an illustration of
general analysis of Ref. 10, where it was shown that a n
essary condition of the ballistic advection in space and ti
periodic velocity fields is the nonergodicity~i.e., the pres-
ence of stability islands! of the flow.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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IV. NUMERICAL PROCEDURE AND RESULTS

We wish to follow many orbits of~22! for long times at
many different parameter values. By using a symplec
integrator,18,19 we ensure that the computed Poincare´ map f P

is exactly~up to roundoff error! area preserving and that n
spurious non-Hamiltonian-like dynamics or bifurcations w
be observed. As the system~22! is nonautonomous, it is
clearest to derive the symplectic integrator in the exten
phase space (F1 ,F2 ,j,pj) in which j5t. The extended
Hamiltonian is H̃5H1pj , and this Hamiltonian may he
split into four pieces, each of which is integrable:

H̃5H11H21H31H4 ,

H15V1F22~k13k2!a2~ t !cosF2 ,

H252V2F12~k13k2!a1~ t !cosF1 ,

H352~k13k2!a3~ t !cos~F11F2!,

H45pj .

Writing the time steps as, e.g.,F°F8, the time-Dt flows of
these Hamiltonians are

H1 : F185F11Dt@V11~k13k2!a2~j!sin F2#

H2 : F285F21Dt@V22~k13k2!a1~j!sin F1#

H3 : F185F11c, F285F22c,

c5Dt~k13k2!a3~j!sin~F11F2!,

H4 : j85j1Dt.

For an algorithm with second-order accuracy, we comp
these flows in the pattern 1, 2, 3, 4, 4, 3, 2, 1. Notice how
Hamiltonian splitting has the effect of ‘‘freezing’’ the ex
plicit time dependence ofH during the integration. To com
pute the Poincare´ map, we take an integer number of tim
steps~usually 50 or 100! per periodTM of the forcing func-
tions ai(t). As most orbits are chaotic and cannot be f
lowed accurately anyway, we believe that second-order
curacy is sufficient, although we have, of course, chec
that our results do not depend on the time stepDt.

We use the explicit parametrization of triads given
~13!, ~14!. The elliptic functions defining the time depen
dence ofai are also calculated numerically using a stand
algorithm.20

A bifurcation sequence for the phase portrait of the tr
with g50.7,a51 is represented in Figs. 2–6 forb decreas-
ing from 2 to 0.5. The initial amplitudea30

was chosen to be
0.66 ~quite close to its allowable maximum in this case
0.67! in order to maximizeTM . The sequence is characte
ized by a regular ergodic~i.e., space filling but not mixing!
behavior for largeb, as expected~Fig. 2!, which gives place
to chaos~Fig. 3! by more and more vigorous distortion of th
phase trajectories and, then, to the birth of multiple relativ
small and/or narrow islands~Fig. 4!. These primary islands
disappear giving rise to chaos~Fig. 5! from which secondary
‘‘fat’’ islands are born~Fig. 6!. It is these fat islands that giv
rise to a relatively large numbers of shooters and a co
sponding large amount of anomalous diffusion of tracer p
Downloaded 03 Feb 2003 to 129.240.124.130. Redistribution subject to 
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ticles. Interestingly, these islands do not arise from a re
nance of the knownb→` integrable limit. This makes them
difficult to predict or account for analytically.~They may be
remnants of someother integrable limit of the model, even i
this limit is not reached through physically consistent valu
of the parameters.!

For reasons of physical consistency of the model we
not show the subsequent bifurcations that take place bey
the limit Ti;TM , although they may be interesting in them

FIG. 2. The phase portrait representing ten different trajectories of the t
g50.7, a51 at b52 after 2000TM . The modulation periodTM547.14.
The wave periodsTi are 5.66, 2.74, 5.32, respectively.

FIG. 3. The phase portrait of the triadg50.7, a51 at b51 after
2000 TM ; TM547.14. The wave periodsTi are 11.33, 5.49, 10.64, respec
tively.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



a
ila

s
-
he

not
le to

nd,
om-
ha-
ted
el-

c-

c-

-

in
itial
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selves. A corresponding evolution of the cloud of tracer p
ticles in the physical space is shown in Figs. 7–9. A sim
scenario was observed for other triads close tog* , a* ,
although the number of primary narrow islands varies. W
also remark that the presence or absence of elliptic island
sensitive to the ratioa30

/a10
. Another generic scenario con

sisting in a direct transition to quasiuniform chaos from t
regular behavior while decreasingb was also widely ob-

FIG. 4. The phase portrait of the triadg50.7, a51 at b50.75 after
2000 TM ; TM547.14. The wave periodsTi are 15.11, 7.32, 14.19, respe
tively.

FIG. 5. The phase portrait of the triadg50.7, a51 at b50.7 after
2000 TM ; TM547.14. The wave periodsTi are 16.18, 7.84, 15.21, respe
tively.
Downloaded 03 Feb 2003 to 129.240.124.130. Redistribution subject to 
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served. Although for the above-explained reasons we did
explore the whole of parameter space and, thus, are unab
estimate a measure of island-bearing~i.e., shooter-
supporting! triads we, nevertheless, see that these triads a
hence, the phenomenon of the ballistic transport, are c
mon. At the same time, a chaotic mixing related to the c
otic part of the phase portrait is universal. It should be no
that elliptic islands appear when nonlinearity is well dev

FIG. 6. The phase portrait of the triadg50.7, a51 at b50.5 after
2000 TM ; TM547.14. The wave periodsTi are 22.66, 10.98, 21.27, respec
tively. An elliptic trajectory inside the island is also shown.

FIG. 7. The dispersion of tracer particles, initially uniformly distributed
the a (2p)2 box in the phase space after 500 modulation periods; the in
box is also shown. The triad is the same as in Fig. 2.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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oped@the ratio max(Ti)/TM;1
3 or greater# while the threshold

for chaotic mixing corresponds to higher values ofb.
A totally different bifurcation sequence exhibiting

standard scenario~cf., e.g., Ref. 1! of chaotic zones appear
ing at the separatrix crossing and then further developing
resonance overlap is observed for the isosceles triads,
10–12. As mentioned earlier, this is a degenerate case
sense that modulation becomes harmonic. From the poin
view of transport it is degenerate, too, as one of the w
vectors of an isosceles triad is necessarily vertical, wh
means that one of the triad’s components is, in fact, a sp
periodic zonal flow carrying Lagrangian particles to infinit

V. DISCUSSION

Thus, we have shown that chaotic mixing accompan
in many cases by ballistic advection of a fraction of trac
particles characterize the Lagrangian transport by reso

FIG. 8. The dispersion of tracer particles, initially uniformly distributed
the (2p)2 box in the phase space after 500 modulation periods. The tria
the same as in Fig. 5.

FIG. 9. The dispersion of tracer particles, initially uniformly distributed
the (2p)2 box in the phase space after 500 modulation periods. The tria
the same as in Fig. 6.
Downloaded 03 Feb 2003 to 129.240.124.130. Redistribution subject to 
ia
gs.

a
of
e
h
e-

d
r
nt

triads of Rossby waves. However interesting by themselve
the question arises as to the relevance of these results
particle advection by the full flow where an initial wave triad
excites, at a longer time scale, a broad spectrum of waves
is true that the total vorticity conservation following from
~1!,

Dv

Dt
50, v5Dc1by, ~26!

is

is

FIG. 10. The phase portrait of the isosceles triad with wave-vectors mod
uk i u equal to 0.3, 1, 1, respectively. Hereb52.

FIG. 11. The phase portrait of the isosceles triad with wave-vectors mod
uk i u equal to 0.3, 1, 1, respectively. Hereb51.
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where D/Dt denotes the Lagrangian derivative, is not r
spected by~3!, ~6!, which explains the fact that we observ
chaotic behavior with a nonpiecewise constant total vortic
~cf. Ref. 8, where it was shown that a piecewise-const
profile of vorticity is a necessary condition for chaos
vorticity-conserving time-periodic flows!. Another constraint
following from ~26! is that as total vorticity of any Lagrang
ian ~5tracer! particle is constant its displacement in they
direction is limited from above by

y22y15b21~Dc12Dc2!, ~27!

which implies the existence of an upper limit of possib
dispersion in this direction determined by the magnitude
the variations of relative vorticity of the flow. Thus, th
~nonhorizontal! ballistic advection at a very long time sca
(@e21) in the full flow is questionable. Nevertheless, w
believe that the ballistic transport we have found should c
tribute to the anomalous diffusion of tracers in the full flo
The fact that the nontrivial dynamical behavior we observ
takes place in the domain of parameters corresponding to
transition from wave-dominated to vortex-dominated
gimes inb-plane turbulence21 suggests that theb-plane flows
themselves may have interesting transport properties in
crossover regime. This remains to be checked in direct
merical simulations ofb-plane turbulence. Note that in term
of the topology of thev isolines this regime correspond
exactly to the appearance of closed contours~cf. Ref. 22!.
The role of the circulation cells in the anomalous diffusion
purely vortical two-dimensional turbulence is we
known23,24 ~see Refs. 25 and references therein for a rev
of the anomalous diffusion problem!. Much less is known on
transport properties of more geophysically relevant syste
where waves and vortices may coexist, likeb-plane and
stratified turbulence. We should emphasize that in previ

FIG. 12. The phase portrait of the isosceles triad with wave-vectors mo
uk i u equal to 0.3, 1, 1, respectively. Hereb50.5.
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work the problem of diffusion by the ensembles of dr
~5Rossby! waves was studied, neglecting the modulation
the wave amplitudes~cf. Refs. 4, 26!. The transport by re-
laying triads of nonlinear Rossby waves found in the pres
study may provide a dynamical mechanism for anomal
diffusion. Note that if the role of the broad spectrum
waves generated at later times by the initial triad may
assimilated to turbulent diffusion the ballistic transport m
persist in the resulting advection–diffusion equation acco
ing to the general analysis of Ref. 27.

Let us finally mention that the same mechanism exists
stratified turbulence where vortices coexist with intern
gravity waves. In the Boussinesq approximation valid
short enough waves, where the effects of the wave-amplit
growth with height are neglected, the nonlinear grav
waves propagating in the vertical plane obey the followi
equations~the equations of the stratified turbulence in t
vertical plane!:

]Dc

]t
1J~c,Dc!1

]j

]x
50,

~28!
]j

]t
1J~c,j!2N2

]c

]x
50,

where c is the streamfunction of the velocity field in th
vertical plane,j is the buoyancy variable,N is the Brunt–
Väisäla frequency~see e.g., Ref. 22!. The dispersion relation
for the linear waves following from~28! is

v25V~kx ,ky!25N2
kx

2

k2 , ~29!

and allows for resonant triads~see, e.g., Ref. 28 for the dis
cussion of the role of resonant triads in ocean dynami!.
Thus, an analysis similar to that made above for the Ros
waves may be done in this case, too, with similar conc
sions.
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