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Abstract. We study the motion of surfaces in an intrinsic formulation in which
the surface is described by its metric and curvature tensors. The evolution equa-
tions for the six quantities contained in these tensors are reduced in number in

two cases: (i) for arbitrary surfaces, we use principal coordinates to obtain two
equations for the two principal curvatures, highlighting the similarity with the
equations of motion of a plane curve; and (ii) for surfaces with spatially constant
negative curvature, we use parameterization by Tchebyshev nets to reduce to a
single evolution equation. We also obtain necessary and sufficient conditions for a
surface to maintain spatially constant negative curvature as it moves. One choice
for the surface’s normal motion leads to the modified-Korteweg de Vries equation,
the appearance of which is explained by connections to the AKNS hierarchy and
the motion of space curves.

1. Introduction and equations of motion

Studies of the motion of surfaces and interfaces occur in several scientific
disciplines, including geometry [8,10,14,18,19], water waves [22], crystal growth
[11,13], combustion [4], and gas dynamics [20]. Pelcé [17] collected and reprinted
an interesting collection of original articles in some of these areas. To simplify the
analysis, these studies often consider only two-dimensional motion, thus reducing
the problem to the motion of a curve [6], but this is only a special case of the
usual situation.

To study the evolution of two-dimensional surfaces arbitrarily embedded in
three dimensions, a natural approach is to describe the surface purely intrinsi-
cally, that is, in terms of the surface’s metric and curvature tensors. In these
variables, the equations of motion for the surface take the form of six coupled
nonlinear evolution equations for the six independent components of the two
tensors. These equations were first written down by Brower et al. [3], and later
by Nakayama & Wadati [16]. But these equations are highly redundant: the
surface has codimension one and should be described by only one independent
function.

The best formulation of this problem is not yet known. Here we take a cue
from the successful treatment of the motion of curves in terms of local curvature,
and obtain evolution equations for surfaces in terms of similar intrinsic quanti-
ties. We simplify the evolution equations of [3] and [16] by reducing the number
of unknowns, obtaining two simplifications by choosing two different parameter-
izations of the surface. In both cases, the key idea is to force the coordinate
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lines to maintain their defining property as the surface evolves, by adding an
appropriate tangential velocity to the evolution.

The first parameterization, in §2, is general: we parameterize a surface by its
principal lines (i.e., lines tangent to the directions of principal curvature). This
reduces the system to four coupled equations, and, with a particular choice of
parameterization along the principal lines, to two equations for the two curva-
tures. If the surface happens to be a cylinder above a curve in a plane, and if
the motion is two-dimensional, then one curvature vanishes and the equations
reduce to the single equation obtained in [3,15] for the evolution of the curvature
of a plane curve.

The second parameterization, in §3, is more specialized: surfaces of constant
negative curvature have an elegant parameterization by Tchebyshev nets. For
surfaces that maintain constant negative curvature as they move, their motion is
specified by a single evolution equation for the angle between the coordinate lines.
As an example, we show that one choice for the normal velocity of the surface
leads to the modified Korteweg-de Vries equation for the surface’s evolution.

The first step is to derive the six coupled equations for the motion of a surface
moving in R3. Local coordinates on the surface are (x1, x2) = x, time is t, and
the position (in R3) of a point on the surface is r(x, t). Later ṙ (= ∂r/∂t) will
be specified, so one can think of x as a Lagrangian particle label on the surface.
Define two tangent vectors and one normal vector:

τµ = r
,µ n =

τ1 × τ2

|τ1 × τ2|
,

where greek indices range over µ = 1, 2 with
,µ = ∂

∂xµ
. (Both the notation used

here and the preliminary development follow Spivak [21, Chapter 2].) Note that
n is a unit vector but the τµ are not necessarily unit vectors. We have the metric
gµν and curvature hµν tensors (which define the first and second fundamental
forms gµνdxµdxν and hµνdxµdxν , respectively):

gµν = τµ · τν , hµν = n · τµ,ν = n · r
,µν (1.1)

As one moves along the surface (at a fixed time), the tangent and normal vectors
change according to the Gauss-Weingarten equations,

τµ,ν = τλΓλ
µν + nhµν

n
,ν = −τλgλµhµν

(1.2)

where Γλ
µν are the Christoffel symbols of the second kind defined by the met-

ric gµν , and gµν = (gµν)−1 as usual. Repeated indices are summed on unless
otherwise noted.

The six quantities in (1.1) are not all independent. They are related by three
consistency conditions for the PDE’s (1.2)—the Gauss-Codazzi equations:

R1212 = deth (1.3a)

hνλ;µ = hµλ;ν (1.3b)

where ;µ denotes covariant derivative and R1212 is the nontrivial element of
the Riemann tensor. Note that (1.3b) gives independent information only for
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(ν, λ, µ) = (1, 1, 2) or (2, 2, 1). Of the three remaining degrees of freedom, two
are due to the arbitrary parameterization, leaving one—which we expect, since
the surface could be written, e.g., r = (x, z(x), t).

Therefore one might ask: What is to be gained by going to an “intrinsic”
(i.e., gµν , hµν) representation of the surface when eqs. (1.3) cannot usually
be solved explicitly? Any surface motion can after all be formulated locally as
ż = f(x, t). Such an approach fails if the surface becomes vertical—an apparently
artificial constraint—but the intrinsic formulation can also suffer from artificial
coordinate singularities. One advantage is that in some applications, the motion
of the surface normal to itself is given naturally in terms of the local curvatures
[3,19] which are the eigenvalues of gµλhλν ; secondly, such an approach has been
successful in the study of the motion of curves, as we now discuss.

Hasimoto [9] showed that in the self-induction approximation, the motion of a
3D vortex filament (which moves in the direction of its local binormal vector with
speed equal to its local curvature) can be reduced to the nonlinear Schrödinger
equation. Lamb [12] extended this to more general motions of curves, and found
motions obeying the sine-Gordon and modified Korteweg-de Vries equations. All
three of these equations are completely integrable [1], and Goldstein and Petrich
[7] showed how to specify infinitely many two-dimensional motions of curves
in terms of integrable evolution equations. The occurrence of such integrable
equations was shown in [15] to be due to the fact that the Serret-Frenet equations,
(t = τ/|τ |, s =arclength)

(

t
,s

n
,s

)

=

(

0 κ
−κ 0

) (

t

n

)

(1.4)

which are the analog of (1.2) for plane curves, are equivalent to the AKNS

scattering problem [1] at zero eigenvalue. Thus evolutions

(

ṫ

ṅ

)

can be specified

which give rise to integrable equations of the AKNS hierarchy.
The equations for surfaces, (1.2), are more complicated than those for curves,

(1.4), for two main reasons: (i) t in (1.33) is a unit vector, whereas the τµ in
(1.2) are not; and (ii) the coordinates, xi , in (1.2) need not measure arclength.
If we relax these two requirements in (1.4), then they become

(

τ
,x

n
,x

)

=

(

g
,x/2g h
−h/g 0

) (

τ

n

)

which are equivalent to (1.2) when µ = 1 only.
There is another interesting connection between curves and surfaces which we

note briefly. In [15] it is shown that the Serret-Frenet equations for space curves
also reduce to the AKNS scattering problem at zero eigenvalue (i.e., they take
the form (1.4) in appropriate variables). Considering a moving space curve as
sweeping out a surface, we see that the equations analogous to Serret-Frenet for
the surface, the Gauss-Weingarten equations (1.2), must also contain the AKNS
scattering problem (in appropriate variables). This point of view explains the
occurrence of integrable equations from the AKNS hierarchy in the equations
defining particular surfaces, such as the sine-Gordon equation for surfaces of
constant negative curvature.



4 R. I. MCLACHLAN AND H. SEGUR

Motion of a surface can be prescribed in the form

ṙ = Un + V µ
τµ (1.5)

where U and V µ can be specified arbitrarily. This implies (differentiate τµ = r
,µ

and n · τµ = 0 and use (1.2)):

τ̇µ = (U,µ + V νhµν)n + (−Uhλ
µ + V λ

;µ)τλ

ṅ = −gλµ(U
,µ + V νhµν)τλ

(1.6)

Now intrinsic evolution equations for ġµν , ḣµν can be derived in two ways. The
first is to differentiate (1.1) with respect to t and to eliminate τµ and n using
(1.2, 1.3). This was first done by Brower [3] for V µ = 0 and by Nakayama et
al. [16] for V µ 6= 0. There is also an “intrinsic” derivation, namely requiring
compatibility of the PDE’s (1.2) and (1.6). This gives equations which must be

solved for ġµν and ḣµν , and the result is (of course) the same:

ġµν = −2hµνU + Vµ;ν + Vν;µ

ḣµν = U;µν − hµλhλ
νU + hµλV λ

;ν + hνλV λ
;µ + V λhµλ;ν

(1.7)

Notice that V µ does not affect the actual shape of the surface. The easiest
way to see this is to note that the evolution in (1.5) is linear in U , V µ, so we can
consider U = 0; then the V µ velocities just push particles around on a motionless
surface. Notice also that if a coordinate system with some particular defining
property is chosen initially, that property will be destroyed under general motion
of the particles on the surface. Therefore we will use the tangential velocities V µ

to “push” the coordinates back, so that they maintain their defining property as
the surface moves. (In the next sections we show how to do this in some special
cases.) Nakayama et al. [16] in addition allowed the coordinates to evolve on
the surface, but this does not give any extra generality.

We also direct the reader to the detailed work of Pinkall and Sterling [19] on
constant mean curvature surfaces. They use principal coordinates and apply a
motion, as above, with V µ chosen to maintain constant mean curvature, and,
further, obtain families of such surfaces.

2. Principal coordinates

The principal curvatures (κ1, κ2) and principal directions of a surface are the
eigenvalues and eigenvectors of gµλhλν . If the coordinate lines are chosen to be
tangent to the principal directions at each point on the surface, then gµν and hµν

are diagonal, and we have principal coordinates. These can be defined globally
on any surface, and are smooth except where κ1 = κ2—umbilic points. (See [21,
p. 288] for more information about umbilic points; they are generally isolated.)
We define g1, g2, κ1, and κ2 by

gµν =

(

eg1 0
0 eg2

)

, hµν =

(

eg1κ1 0
0 eg2κ2

)

.

Note that gi and κi do not form covariant vectors—they are just functions ap-
pearing in the 2-tensors gµν and hµν .
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In terms of these new variables, the Gauss-Codazzi equations (1.3b) now read

g1,2 =
2κ1,2

κ2 − κ1

, g2,1 = − 2κ2,1

κ2 − κ1

(2.1)

which we will use to simplify the subsequent equations. For completeness, we
also give the Gauss-Weingarten formulae in these variables:

∂

∂x1





τ1

τ2

n



 =





1

2
g1,1 − 1

2
g1,2e

g1−g2 eg1κ1

1
2
g1,2

1
2
g2,1 0

−κ1 0 0









τ1

τ2

n





∂

∂x2





τ1

τ2

n



 =





1
2
g1,2

1
2
g2,1 0

− 1
2
g2,1e

g2−g1 1
2
g2,2 eg2κ2

0 −κ2 0









τ1

τ2

n





(2.2)

As the surface moves, the coordinate lines will not remain principal coordi-
nates unless ġ12 = ḣ12 = 0. (This is where we begin to specify V µ in order to
maintain the desired coordinate system.) This leads to two equations in V 1

,2
and

V 2

,1
whose solution is

V 1

,2
= e−g1f, V 2

,1
= −e−g2f (2.3)

where

f =
(U

,2κ2),1 − (U
,1κ1),2

(κ2 − κ1)2
.

With these choices, (1.7) reduces to four coupled equations:

ġi = −2κiU + V jgi,j + 2V i
,i (2.4a)

κ̇i = κ2

i U + V jκi,j + e−gi/2(e−gi/2U
,i),i + e−gi′ gi,i′U,i′/2 (2.4b)

((i, i′) = (1, 2) or (2, 1); no sum on i, i′). These may be written as

Dgi

Dt
− 2V i

,i = −2κiU

Dκi

Dt
= κ2

i U + U
,sisi

+ e−gi′ gi,i′U,i′/2

(2.5)

where D/Dt is total derivative in the direction −V j∂j (i.e., the right hand side
of (2.5) gives the evolution at “unpushed” particle labels) and si is arclength
along xi, (i.e., s1 =

∫ x1 exp( 1

2
g1(x́1, x2)) dx́1).

As a special case of these equations, we note that if κ2 = ∂2 = 0 so that
the surface only depends on x1, then f = 0 in (2.3), we can take V 2 = 0,
V 1 = W (x1) exp(− 1

2
g1) say, and we recover the equations for the motion of a

plane curve [15]:

ġ = 2W
,s − 2κU κ̇ = κ2U + U

,ss + Wκ
,s

Now we return to the general case, to reduce (2.4) to two coupled equations
for the evolution of the two curvatures, κ1 and κ2. These two equations, along
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with their compatibility condition, (1.3a), seem to be the simplest intrinsic for-
mulation possible for a general surface.

In (2.3), the equations for V µ, there is still the freedom to specify two arbitrary
functions, each of one variable. We can use this freedom to specify gi, and hence
the metric, completely. Here is one way to specify the metric: require

g1(x1, 0, t) = g2(0, x2, t) = 0 ∀ t, (2.6)

so that g11 = g22 = 1 along these two coordinate lines, which are both param-
eterized by arclength (see Figure 1). Let vµ be two functions of integration in
(2.3), i.e.,

V 1(x1, x2) = +

∫ x2

0

exp(−g1(x1, x́2))f(x1, x́2) dx́2 + v1(x1)

V 2(x1, x2) = −
∫ x1

0

exp(−g2(x́1, x2))f(x́1, x2) dx́1 + v2(x2)

where we have suppressed the explicit t dependence. Then, from (2.4a) and
choosing vi(0) = 0, enforcing (2.6) requires

v′i = (κiU − 1
2
gi,i′V

i′)
∣

∣

xi′=0

Now (2.1) can be integrated to define gi completely:

g1 =

∫ x2

0

2κ1,2

κ2 − κ1

dx́2, g2 = −
∫ x1

0

2κ2,1

κ2 − κ1

dx́1. (2.7)

Substituting these into (2.4b) yields two coupled equations for the evolution of
the two curvatures, as desired.

Thus, we have in (2.4b), (2.7), the evolution equations for the principal cur-
vatures that are most closely analogous to the well-known evolution equations
for the curvature and torsion of a space curve [7]. For a (moving) surface, the
principal curvatures are not independent; they are still constrained by Gauss’s
equation (1.3a), but this constraint cannot be eliminated easily in this representa-
tion. Even so, these two coupled evolution equations for the principal curvatures
are certainly more compact than the (equivalent) six coupled equations in [3]
and [16]. This simplification is the main result in this section.

In the κ2 = ∂2 = 0 case, v′
1

= κ1U and in this gauge, x1 is arclength, so we
get W =

∫

κ1U ds as expected.

3. Surfaces of constant negative curvature

From the wealth of special surfaces and coordinate systems available, we con-
sider a particular choice for which the equations of motion take a particularly
simple form. At every point on a surface whose Gaussian (or total) curvature
K is negative, the curvature tensor has two null vectors (i.e., vectors vµ which
annihilate hµν , so vµvνhµν = 0; see [21, p. 70]). An asymptotic line is a smooth
curve on the surface whose tangent vector coincides with one of these null vec-
tors at each point along the curve. If the Gaussian curvature is constant (in
space) and negative, then there are two sets of asymptotic lines, and they form



A NOTE ON THE MOTION OF SURFACES 7

a Tchebyshev net, i.e., they can be parameterized by arclength everywhere [21,
p. 368]. With these as coordinate lines, the metric and curvature tensors take
the form

gµν =

(

1 cosω
cosω 1

)

, hµν =

(

0 h12

h12 0

)

, (3.1)

where ω measures the angle between the coordinate lines. Furthermore, the
Gauss-Codazzi equations become:

h12 =
√
−K sin ω, (3.2a)

ω
,12 = −K sin ω, (3.2b)

i.e., solutions of the sine-Gordon equation are in a local 1–1 correspondence with
such surfaces. Unfortunately such coordinates may be only local [21, p. 373].
The Gauss-Weingarten equations (1.2) also take the simple form

T
,1 =





ω
,1 cot ω −ω

,1 cscω 0

0 0
√
−K sin ω√

−K cot ω −
√
−K cscω 0



 T (3.3)

=





−(ln(κ1 − κ2)),1 −(ln(κ1 + κ2)),1 0
0 0 −κ1κ2/(κ1 − κ2)

κ1 + κ2 −(κ1 − κ2) 0



 T

and similarly for T
,2, where

T =





τ1

τ2

n





and κ1, κ2 are the principal curvatures
√
−K(cot ω ± csc ω).

The first step is to find those normal velocities U that keep the Gaussian
curvature constant in space (but not necessarily in time). Substitute (3.1) into
(1.7), and require both that the form of (3.1) be preserved (i.e., ġ11 = ġ22 =

ḣ11 = ḣ22 = 0) and consistency (so that ω̇ from (1.7a) equals that from (1.7b)).
One finds in this way that U must satisfy a linear inhomogeneous equation:

U
,12 = −KU cosω + (sin ω)

d

dt

√
−K (3.4)

and that the tangential components of velocity must satisfy:

V i
,i′ = −(KU sin ω+ω

,i′((−1)i′U
,i′ cosω+U

,i)+U
,i′i′ sinω)/2

√
−K sin2 ω (3.5)

where i, i′ = (1, 2) or (2, 1), and there is no sum on i′. There are no other con-
straints. As mentioned earlier, only the normal component of velocity actually
moves the surface, so we have established the following

Proposition: Suppose that a surface whose Gaussian curvature K is constant in
space and negative moves according to (1.5). It will maintain (spatially) constant
negative curvature if and only if U satisfies (3.4).

Note that if K̇ = 0, then (3.4) is just the linearization of the sine-Gordon
equation, (3.2b), so its translational symmetry immediately gives two solutions
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of (3.4): U = ω
,1 and U = ω

,2. With the velocity components chosen to satisfy
(3.4) and (3.5), the evolution of ω is given by

Dω

Dt
+ (V 1

,2
+ V 2

,1
) sin ω = 2

√
−KU (3.6)

where D/Dt was defined below (2.5).

As an example, take K̇ = 0 and U = ω
,1 (=ω

,s1
). Eqs. (3.5) can be integrated

to find

V 1 = ((ω
,1)

2 + 2ω
,11 cot ω)/4

√
−K, V 2 = −ω

,11 cscω/2
√
−K

so

ω̇ =
1

4

(

6
√
−Kω

,1 +
(

(ω
,1)

3 + 2ω
,111

)

/
√
−K

)

(3.7)

which is the modified Korteweg-de Vries equation in the variable ω
,1. The occur-

rence of an equation from the AKNS hierarchy is not surprising, for the following
reason. Let ω(x1, 0) be an arbitrary function. It can be integrated in x2 under
(3.2b) to sweep out a surface of constant negative curvature, or (because (3.7)
does not depend explicitly on x2) it can be integrated in t under (3.7). These
two AKNS evolution equations commute—thus (3.7) obviously preserves the
constant curvature property. In a sense, one should regard both x2 and t as
time-like variables. A similar instance of time-like evolution in spatial directions
was reported in [2]. It is not known whether more complicated evolutions (e.g.
U = ω

,1 + ω
,2) can give rise to integrable equations.

Now that it is known that this surface motion can be expressed as the mo-
tion of a space curve it is fruitful to explore further. The coordinate lines are
asymptotic and hence their principal unit normals lie in the surface (this can be
seen from (3.3), because T1,1 is proportional to the principal unit normal of the
x1-curve). Furthermore for the particles in a coordinate line to trace out the
coordinate grid properly it is easy to see (see Figure 2) that

r
,2 = sin ω nc + cosω tc ≡ Ucnc + Wctc

where the subscript c denotes properties of an x1-coordinate curve, κc is the
curvature of the coordinate curve, and τc is its torsion. We know that this
“motion” (i.e., motion in the x2-direction, as the curve sweeps out the initial
surface) maintains the arc-length parameterization, which requires W

,1 = κcU ⇒
κc = −ω

,1. Now take this curve motion and find κc,2 using the space-curve
evolution equations of [15]: the result is

κc,2 = −τ2 sin ω.

Because ω satisfies the sine-Gordon equation, we get τ =
√
−K, i.e., Tchebyshev

coordinate lines in a surface of constant negative curvature have constant torsion
[5]. The curve is evolving under the equation of motion

r
,2 = − sin ∫ κc dsnc + cos ∫ κc ds tc (3.8)

We have in fact recovered the constant-torsion sine-Gordon curve equation of
Lamb [12]. However, due to his inverse method (specifying ṫ, ṅ, ḃ instead of ṙ),
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he was unable to determine ṙ for this evolution. In the forward direction it is
easy to check that we have in fact the same evolution.

(note: In the literature there are two distinct curve motions which obey the
sine-Gordon equation. Let the curvature evolve by κ̇c ≡ ΩU . Lamb’s evolution,
given by (3.8), has ΩU = 0, and the curve would not move at all if τc = 0.
Nakayama et al. [15] found a planar curve motion which obeys sine-Gordon: it
has Ω2U = 0.)

As pointed out above, we can also think of an x1-coordinate line as moving
in the t-direction, governed by the equation of motion (see Figure 2)

ṙ = Ubc + V 1tc + V 2(cos ω tc + sinω nc)

= −κcbc + κc,1nc/2
√
−K + κ2

ctc/4
√
−K

(3.10)

The final cross-check is that a space curve with motion given by (3.10) has (from
the curve equations in Nakayama et al. [15]) intrinsic evolution

κ̇c =
3

2

√
−Kκc,s + (3κ2

cκc,s + 2κc,sss)/4
√
−K

τ̇c = 0

agreeing with (3.7) when κc = −ω
,1.

In summary, for a (moving) surface of constant negative curvature, the intrin-
sic formulation together with specially enforced coordinate systems interrelates
naturally with the dynamics of curves and the surfaces they sweep out. The two
points of view provide a fruitful alternative to the traditional representations of
surface motion.
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