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Abstract

Ž .Incompressible two-dimensional flows such as the advection Liouville equation and the Euler equations have a large
family of conservation laws related to conservation of area. We present two Eulerian numerical methods which preserve a
discrete analog of area. The first is a fully discrete model based on a rearrangement of cells; the second is more
conventional, but still preserves the area within each contour of the vorticity field. Initial tests indicate that both methods
suppress the formation of spurious oscillations in the field. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .When a smooth field v x, y is advected by an
area-preserving flow, the area within each contour of
v is preserved. This is seen in pure advection and in
the Euler equations, for example, and is important in
the numerical solution of two-phase free boundary
problems, where the total volume of each fluid should
be preserved. Yet, although the advection problem
has been addressed in probably thousands of papers,
and very accurate, stable, and efficient methods are
known, no existing numerical methods take the
area-preservation property into account. In this Letter
we present an initial study containing two methods

Ž .which do preserve a discrete analog of area. Al-
though they are not, presumably, competitive with

1 E-mail: r.mclachlan@massey.ac.nz

the best existing methods for advection, the results
are extremely promising.

The configuration space of an inviscid incom-
pressible fluid is the group DD of volume-preservingm

diffeomorphisms of the fluid’s domain; the ‘Arnold’
picture, in which the Euler equations are geodesic
equations on this group equipped with the kinetic

Ž . w xenergy L metric, is treated in Ref. 2 . The config-2

uration at any time is a volume-preserving rearrange-
ment of the initial condition. Existing Eulerian
numerical methods do not preserve any discrete ana-
logue of this property. This is particularly relevant in
two dimensions, where area preservation leads to an
infinite number of conserved quantities, the general-
ized enstrophies.

We consider a two-dimensional fluid with diver-
Ž .gence-free velocity field us u,Õ , stream function

Ž .c i.e. usc , Õsyc , and some quantity v,y x

which we call the vorticity, which is advected by the
fluid:

vquP=vsvqJ v ,c s0, 1Ž . Ž .˙ ˙

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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where the Jacobian

E a,bŽ .
J a,b s . 2Ž . Ž .

E x , yŽ .
In the two situations we shall consider, this is a
Hamiltonian system with Poisson bracket

� 4F ,G s v J dF ,d G d x d y 3Ž . Ž .H
and Hamiltonian

1Hs cv d x d yH2

where the stream function c is either a given func-
Ž . Ž .tion csc x, y,t , in which case Eq. 1 is the

Ž .Liouville advection equation, or is determined by
2 Ž .the Poisson equation = csyv, in which case 1 is

the the two-dimensional Euler equation. Other two-
dimensional flows such as the shallow water and
semi-geostrophic equations also possess a quantity
v, called a potential vorticity, that is advected ac-

Ž .cording to Eq. 1 . There are also applications to
level-set methods, in which v is not a physical

Ž .variable but is introduced so that the curve v x, y
sc can indicate a free boundary.

Ž .The Casimirs of the Poisson bracket 3 are con-
Ž .served quantities of the PDE 3 . These can be

variously written as

C s f v d x d yŽ .Hf

for any function f such that C exists, asf

C s v n d x d y ,Hn

Žcalled the generalized enstrophies C is the usual2
.enstrophy , or as the areas enclosed by each vorticity

contour

A c s 1 d x d y.Ž . H
vGc

They all reflect the fact that v is being advected by
an area-preserving vector field and can only reach
states which are area-preserving rearrangements of
its initial state. That is,

v x ,t sv wy1 x ,0 ,Ž . Ž .Ž .t

where w is the time-t flow of the vector field u.t

The famous Arakawa Jacobian is an Eulerian
Ž .finite difference approximation of Eq. 2 which

preserves discrete analogues of the energy H and the
w xenstrophy C 1,4 . It is known to preserve the mean2

of the energy spectrum and to prevent some nonlin-
ear instabilities. However, the other conserved quan-
tities are not preserved and their role in the dynamics

w xis not known 2 .
Area preservation can also be studied in a La-

grangian framework – for example, point vortex
methods could be said to be area-preserving – but
Lagrangian schemes carry a lot of extra information
Ž .the particle paths which should be decoupled from
the dynamics. The dimension of the phase space is
halved in Eulerian form, and further reduced by

Ž .preserving discrete analogues of the Casimirs. For
ODEs, it is well established that the best long-time
results are obtained by working in the smallest possi-

w xble phase space 5 .
The Hamiltonian picture has been described by

w xMarsden and Weinstein 6 . The configuration space
is the group DD . The Euler equations in Lagrangianm

form are a canonical Hamiltonian system on T ) DD ,m

and in Eulerian form are a Lie–Poisson system on
the dual of the Lie algebra of DD , which is identifiedm

with the space of vorticities. The coadjoint orbits of
this space are the level sets of the Casimirs, each of
which is a symplectic manifold. Discretizations of
the Eulerian form are not, in general, Hamiltonian
systems, nor do they have conserved quantities cor-

Žresponding to the Casimirs although there is one
interesting Hamiltonian discretization, the sine-Euler

w x.equations 10 .
Therefore we forget about the Hamiltonian struc-

ture and study the Casimirs – the area-preservation –
and present two models in which a discrete analogue

Ž . Ž .of the areas A c is preserved. The first Section 2 ,
based on a literal rearrangement of cells, is interest-
ing in that it gives a fully-discrete, cellular-
automata-like model of an incompressible fluid. It
does not preserve smoothness of the vorticity field
Žalthough filamentation and turbulence mean that it

.can’t usually stay very smooth anyway . A smooth
Ž .version Section 3 is based on computing an approx-

Ž .imation of A c which is smooth as a function of c,
Ž .and relabeling the vorticity field so that A c is

constant in time. It is tested on the Liouville equation
and prevents the appearance of large spurious max-



( )R.I. McLachlanrPhysics Letters A 264 1999 36–4438

ima and minima in the vorticity field during its
evolution.

2. The cell rearrangement model

Both of the models presented here are projection
schemes. The vorticity is evolved by any sensible

Ž .scheme for some short time t e.g., 1–10 time steps ,
and then projected onto some space of rearrange-
ments of the original vorticity.

In this section we consider the vorticity field to be
piecewise constant on a set of fixed cells, which for
convenience we take to be squares with side h. A
Ž .minuscule! subset of the rearrangements of the
initial condition is given by the permutations of the
cells. However, these can be naturally associated
with the fluid flow. For, consider the area-preserving
map w which is the time-t flow of the fluid. Accord-

w xing to a theorem of Lax 3 , there is a mapping P
which permutes cells and which satisfies

Ž . Ž . œ1. P C lw C /0 for all cells C; and
5 Ž . Ž . 5 5 Ž . Ž . 52. P x y w x F sup w y y w zy , z g C'q 2 h ; xgC.

The dynamics of such lattice maps are often stud-
ied. For example, if the continuous map w is iterated
on a computer, it will not be exactly a bijection or
exactly area-preserving, due to round-off error. By
replacing it with a lattice map and examining the
limit h™0 the effects of roundoff error can be
studied.

The easiest way to construct lattice maps is as a
composition of shears xX sx for is1, . . . ,d, xX si i j
? Ž .@ ? @f x , . . . , x for jsdq1, . . . ,n, where x is thej 1 d

nearest lattice point to x. This would be suitable, for
example, if w itself were approximated by a product
of shears, as is for example the flow of separable

Ž . Ž . ŽHamiltonians HsH p qH q the flow of the1 2

Hamiltonian vector field corresponding to each H isi
.a shear . This is very fast and the permutation need

not be constructed explicitly.
However, in the present case w can only be

obtained by integrating the Lagrangian particle paths
for a short time t, and an explicit approximating

w xlattice map seems to be unobtainable. Scovel 8
suggested using maps of the form, e.g., xX sxq

? ŽŽ X. .@J =S xqx r2 for a suitable Poincare generating´
Ž Ž .function S here Ss D t c would give a good

approximation of the time-D t flow of the stream
.function c . However, this nonlinear, discrete equa-

tion does not seem to have solutions in general.
Thus, it seems that one must laboriously construct

a table of the permutation. An algorithm which does
w xthis is described in Ref. 7 . Its running time is

Ž 3. Ž 2 .OO N , where NsOO 1rh is the number of cells.
ŽOne must construct lists of candidate cells e.g., all

Ž ..those that intersect w C and make successive
choices from these lists, backtracking when no
choices remain. While practical for moderate N when
the dynamics of the lattice map are going to be
studied intensively, in the present application w

changes at every time step; searching for a com-
pletely new permutation every time is too expensive.

w xThis approach has been explored by Turner 9 .
Luckily, there is a way out of this impasse, using

the extra physical information attached to each cell:
the vorticity itself. The only use of the permutation
P is to update the vorticity field v by v¨v,˜
v(Psv, in order that the distribution of vorticity˜
values remains constant. This can be achieved di-
rectly, without actually constructing a P which ap-
proximates w, by the following algorithm. Let

Ž .rank c be the number of cells with vorticitiest

greater than or equal to v at time t, i.e.,

rank c sa j:v x ,t Gc ,Ž . � 4Ž .t j

with ties broken arbitrarily to make rank an invert-t
� 4ible function onto 1, . . . , N . Then:

1. Update the field v for time t any standard Eule-
rian method; and

y1Ž Ž ..2. let v s rank rank v .˜ j 0 t j

The new field v can be constructed in time N log N˜
by sorting the two lists of vorticity values at times 0
and t. The largest current value is replaced by the

Žlargest original value, and so on. Other updates,
5 5 .based on minimizing vyv , are also possible.˜

This algorithm can be regarded as constructing a
permutation, albeit a permutation that has no rela-
tionship to the flow w. This is a truly finite-state
model of an incompressible fluid: the state space is
the permutation group S and the fluid dynamicsN

reduces to the dynamics of the map S ™S , de-N N
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fined above, parameterized by the initial distribution
of vorticity values. It is an almost cellular-automata-
like fluid model, although lacking the local update
property of CAs. It has the aesthetic appeal of cap-
turing the vorticity-rearrangement property perfectly
in a naturally discrete way, of constructing a ‘dis-
crete coadjoint orbit’, and it is very cheap.

However, these advantages are offset by a practi-
cal disadvantage of lack of smoothness. The new
vorticity values are selected somewhat arbitrarily
from the sorted list, and the new field may be
rougher than the original. This is probably unavoid-
able, given the chosen fully discrete state space. The
noise of this imposed roughness may swamp any
gains from preserving the coadjoint orbits. However,
in a turbulent flow with highly filamented vorticity,
the loss of smoothness may not be significant. A
second consequence of the lack of smoothness is that

< Ž . Ž . <if v x,t yv x,0 is too small, then v'v – the˜
field cannot be updated at all. The remapping inter-
val t must be large enough to allow some change in
the configuration. For example, the flow map w

should move each cell across at least 2 cells so that
the algorithm has some scope for finding a suitable
permutation.

3. The vorticity relabeling model

The cell rearrangement model produces an area
Ž .function A c which is discontinuous – in fact, it is

piecewise constant. To improve it, we need to
Ž . Ž .i produce a smoother approximation of A c . If

Ž .v x, y is a smooth function, we want an ap-
Ž .proximation of A c which is as smooth and

accurate as possible, using only the grid values
Ž .w x , y ; andi j

Ž .ii project the vorticity function so that its area
Ž . Žfunction A c at time t)0 equals or closely
.approximates the initial area function.

3.1. Computing the areas enclosed by Õorticity con-
tours

We consider a compact domain V with area 1,
usually a square or torus, on which v is bounded

w x rwith range v ,v , and of smoothness C . Itmin max

may be degenerate, e.g., constant on open sets.

Definition 1. The area function of the field v is
{( ) ( ) }the area enclosed by the set x,y :v x,y Gc , i.e.,

w x w xA : v ,v ™ 0,1 ,v min max

A c s 1 d x d yŽ . Hv
Ž .v x Gc

Ž .A c is strictly decreasing with respect to c. It is
r Ž . 0C at regular noncritical values c, C at nondegen-

erate critical values, and discontinuous at c if the set
� Ž . 4 Žx:v x,t sc has positive area. Lack of differen-
tiability at critical values can be seen by studying

Ž 2 2 . Ž .vsy x qy , for which A c sp c for cF0
. y1and 0 for c)0. Thus, its inverse A exists and is

Žnonincreasing i.e., more area must be enclosed by a
.lesser value of v.

Let II be an interpolation or approximation oper-
ator mapping grid functions to fields, i.e. functions
on V .

Definition 2. The area function of the grid func-
tion v is defined to be the area function of its
interpolant, i.e.,

A :sA .v IIv

It automatically inherits the monotonicity proper-
ties of A. Let RR be a restriction operator mapping
fields to grid functions, usually by evaluating on the
grid. Let vsII RRv. The crucial observations are˜
the following:
1. Choice of II can lead to A being as smooth asṽ

A , and of any order of accuracy as an approxi-v

mation;
2. If v is piecewise linear, its contours are poly-˜

gons, whose area can be found quickly for any
contour topology;

3. If v has polygonal contours, A can be second˜ ṽ

order accurate and as smooth as A .v

Item 1 is obvious, and is a consequence of existence
of C r approximations to functions. An algorithm for

Ž .finding the area enclosed by unions of polygons is
given below. The most important point is 3, as it
says that smooth interpolants, which are expensive in
two dimensions, are not needed to compute a smooth
area function.

Consider a grid function on a triangulation of V .
Interpolating by piecewise polynomials along edges
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only, and constructing the interpolant whose con-
Žtours are line segments within each triangle whose

.graph is a ‘ruled surface’ , yields an area function
Žwhich is as smooth as the interpolant at vertex grid

.point values and analytic elsewhere. Thus, only
smooth one-dimensional interpolation is needed,

Ž 1which is relatively cheap e.g., C can be achieved
.using local cubics .

Piecewise linear interpolation yields a C 0, sec-
ond-order-accurate area function. However, it is bet-
ter than its mere continuity might make it appear,
since its derivative jumps at vertex values are only
Ž 2 .OO h on a grid with spacing h. So, numerically, it

is indistinguishable from a C1 function. In practice,
the most glaring jumps are in its second derivative at

Ž .vertex values, not in the function itself. See Fig. 2.
Piecewise linear interpolation seems to be suitable in
practice and this is what we use in the tests below.
ŽIf the main computational grid is square, we triangu-
late using an extra vertex at the center of each cell,

.whose value is assigned by linear interpolation.
However, true C1 area functions have been tested as
well.

The great advantage of polygonal contours is that
the area of a simple polygon with vertices x , isi

1, . . . ,n, is very easy to compute: it is
n

1 x =x ,Ý i iq12
is1

where x :sx . This can be seen by deriving it fornq1 1

a triangle, triangulating the polygon against a fixed
point, and then using independence with respect to
the fixed point. It can also be viewed as a discretiza-
tion of

1 11 d x d ys d x d yyy d x s x= dx.Ž .H H H2 2
V V EV

However, it would be expensive to chase contours
around the domain and construct a list of simple
polygons. Instead, one can simply scan each triangle
for occurrence of a contour, find its endpoints x ,1

x , and accumulate x =x with a sign determined2 1 2

by the sense of the triangle when its vertices are
visited in order of increasing function values. This

Žhandles arbitrary contour topology. Exception han-
dling is needed when two vertices and the contour all

.have equal values.
We are not sure if there is a similarly simple

method with higher order contours. In practice, to

get more than second order accuracy, we use
Richardson extrapolation from a coarser grid.

For a list of contour values, the above algorithm
involves scanning the cells once and accumulating
areas of the relevant contours. If N values of thec

Ž .area function are needed, and the grid size is OO h ,
Ž .then each cell will contain O hN contours onc

Ž .average, so the computation takes time OO N rh . Inc
Ž .practice, we take N sOO 1rh and build a functionc

table, which is later interpolated as needed. Thus
Ž 2 .computing the areas takes OO 1rh , i.e., it is linear

in the number of grid points.
Ž .If v is nearly constant on large areas, then A c

can be very steep, so it should be tabulated using
adaptive stepping in c. An example of the C 0 esti-

Ž .mate of A c given by piecewise linear interpolation
is shown in Fig. 2, together with the piecewise
constant estimate given by simply counting the num-

Ž .ber of vertices where v)c. Its numerical deriva-
tive indicates its smoothness. Some care must be
taken when interpolating to maintain monotonicity.

We have also computed smooth approximations
Ž .of A c for random v fields whose contours havev

complicated topology.

3.2. Projecting the the space of rearrangements

After evolving v for a short time t with Eulerian
method, we have two grid functions, the vorticity at

Ž . Ž .time 0, v 0 , and at time t, v t . We wish to project
Ž . Ž .v t so that it is an approximation of a rearrange-

Ž .ment of v 0 . The projection should be small and
should not destroy smoothness. Traditional methods
for enforcing constraints, such as steepest descents,
appear to be completely infeasible because of the

Ž .global and sensitive dependence of A c on the
vertex values of v. Our proposed method is a con-
tinuous version of the sorted-assignment used in the
cell rearrangement model of Section 2. In words, we
compute the area enclosed by the contour through
each vertex value and replace it by the value that
originally enclosed that much area. The contour
shapes and topologies do not change: only the values
associated with each contour change.

Definition 3. The relabeling projection on grid func-
( ) ( ) ( )tions v fv x ,t is defined by v t ¨v t , where˜i i

A v sA v 4Ž . Ž .Ž .˜vŽ0. i v Ž t . i

for each Õertex i.
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Ž .It is well defined by monotonicity of A c . It has
Žan obvious continuum analog replacing i by x in

Ž ..Eq. 4 , which if applied to every value of v taken
Ž . Ž .by a smooth vorticity field, with v 0 and v t both

C r, yields a new field v that is C r away from˜
critical points of v and v and C 0 at such critical0 t

points.
To compute a good approximation of this projec-

tion quickly, the current area function is tabulated
and interpolated at the vertex values, and then Ay1

v Ž0.
Ž .which, of course, does not change during the run is
evaluated by interpolation. Of course, we do not

˜̃have a true projection in that/v, because interpola-˜
tion errors in the contours do change the contour
shapes by a small amount when the vertex values are

Ž . Ž .changed. We do not quite get A c sA c forvŽ0. v Ž t .˜
all c. However, these errors can be controlled inde-
pendently of the discretization error in v, for exam-
ple, by using a higher order approximation of A. In
a numerical test, one application of Richardson ex-
trapolation to the areas enclosed by piecewise linear

< < y4contours gave A yA ;10 on a relativelyvŽ0. v Ž t .˜
coarse 20=20 grid. By contrast, without the relabel-
ing projection, errors in the area function rapidly
reach order 1.

If the vorticity is evolved for a short time t, with
a method of spatial order p, spatial errors dominate

Ž p.the error in the area function which are OO th .
Ž .Thus, with tso 1 , the projection only alters the

Ž p. Žfield by o h , and the overall method after evolu-
.tion and projection , is still consistent of the same

order p. The projection cannot correct any errors in
the shapes of the contours, but it can stop those
errors growing further by propagation of the false
distribution of vorticity values, which is particularly
bad for the 2D Euler equations, where those values
determine the velocity field itself.

4. Numerical tests

Here we illustrate some short tests to validate our
approach and show that it is indeed possible to
compute and preserve area in an Eulerian method.

Ž .We use a coarse 20=20 grid which barely re-
Ž .solves the solution, and a crude second order finite

difference approximation to the spatial differences,
in order to test whether the method can correct the
large oscillations and area errors that result.

w x2We solve the Liouville equation in Vs 0,1
3 2Ž Ž . Žwith initial field v s exp y45 x y y 15 y4

1 2. .y advected by the velocity field with stream2

Ž . Ž . Ž .function cssin p x sin p y . See Fig. 1. This ve-
locity field has shear, so v rapidly rolls up into a
tight spiral, mimicking the filamentation of vorticity
in the Euler equations. The spatial derivatives in Eq.
Ž .1 are approximated by the Arakawa Jacobian, which
is second order and preserves discrete analogues of
energy and enstrophy. Although the discrete enstro-
phy Ýv 2 is preserved, this does not help the schemei

Ž .preserve areas any better than nonconservative cen-
tral differences do.

Particles at the maximum of v have a period of
about 0.75. We integrate with a second order method
for 400 times steps of D ts0.003, or total time 1.2,
during which this maximum rotates 1.6 times around
the centre of the square V . Spatial errors completely
dominate the total error at ts1.2.

Without any projection, oscillations rapidly de-
velop and the distribution of vorticity values is not

Ž Ž ..maintained at all well see Fig. 3 a . A large mini-
mum of csy0.69 forms, next to a spurious local

Fig. 1. Initial condition for the test problem in Section 4. The
3 2Ž . Ž Ž . Žcontours show level sets of v 0 sexp y45 xy y15 y4

1 2. .y . The arrows show the vector field corresponding to the2

Ž . Ž .stream function c ssin p x sin p y by which v is advected.
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maximum of cs0.46. The initial maximum of 1
has not been preserved but has decayed to 0.87. The
comparison between the initial and final area func-

Ž .tions see Fig. 2 shows that the area within most
vorticity contours is not preserved at all.

The area-preserving methods both involve period-
ically remapping the vorticity. If this period is too

Ž .short e.g. one time step , then the cell rearrange-
ment model cannot update the vorticity at all. If it is
too long, then not only the area but also the topology
of the level sets can alter, which can not be corrected
by the present methods. Once a small island of
vorticity has been created, for example, it must be
advected by the flow.

We first consider the cell rearrangement model of
Section 2. Suppose the remapping is applied every
N time steps. This needs a large N to yield ar r

reasonably smooth remapped vorticity field; but if
N is too large then spurious maxima can evolver

which are not removed by the remapping. With no
remapping, this maximum reaches 0.46. With N sr

50, it reaches 0.26. With N s20, there is no iso-r

lated spurious maximum, but oscillations start to
appear within the main island. These grow worse at
N s10. Therefore, N s20 seems a reasonable bal-r r

Ž .ance, and the final field is shown in Fig. 3 b . In one
remapping period, the central peak moves across
about 2 cells.

This remapping is very fast, but it does not main-
tain smoothness of v, as can be seen here. In fact, it
is surprising that it works even as well as it does in
this example. However, the lack of smoothness would
not be a problem in problems involving poorly-re-
solved turbulent fields.

Ž . 0Fig. 2. Numerical computation of the area enclosed within vorticity contours. a : C approximation to A using piecewise linearvŽ0.
Ž . Ž . Ž .interpolation Section 3 . Here v 0 is the initial condition shown in Fig. 1. b : Piecewise constant approximation to A by sorting thevŽ0.

Ž . Ž .list of vorticity values Section 2 . c : Area function A after evolving for time ts1.2 with no area preservation with anvŽ t .
Ž . Ž . Ž .enstrophy-preserving scheme Section 4 . In the vorticity relabeling projection, vorticity values are mapped from this curve back to a . d :

Ž . 0Finite difference approximation to dA c rdc, showing that, although only C , for numerical purposes it can be regarded as beingvŽ0.
differentiable. The kinks in this derivative are due to v being set to zero on the boundary.
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Fig. 3. Results for the advection problem on Fig. 1 after 1.6
Ž .rotations about the center. a : Arakawa differences with no area

preservation. A large negative blob of vorticity forms and spawns
a secondary positive blob. The dotted contour indicates the exact

Ž .solution. b : Arakawa differences with cell rearrangement applied
Ž . Ž .every 20 time steps D ts0.001 . c : Central differences with

Ž .vorticity relabeling applied every 10 time steps. d Arakawa
differences with vorticity relabeling applied every 10 time steps.

We consider now the vorticity relabeling model of
Section 3. In this model we are free to decrease the
remapping interval N as desired: we still obtainr

smooth results with N s1, for example. As N isr r

decreased, the results progressively improve. For
N s`, 20, 10, and 5, the peak of the spuriousr

maximum is at vs0.46, 0.09, 0.02, and 0.002,
Žrespectively. Because of its smooth interpolation, it

cannot completely eliminate this maximum, as the
.cell rearrangement model does. Results for N s10r

Ž .are shown in Fig. 3 d . The final field is very
smooth, considering the coarse 20=20 grid, and
very plausibly represents an element of the original
state composed with an area-preserving diffeomor-

Žphism. One contour of the exact solution found by
.particle tracking is shown in the background. The

computed solution has clearly suffered far too much
diffusion, a result of using diffusive, non-upwinded
second differences to approximate the advection term.
Nevertheless, it is impressive that such information

can be extracted from the same method that pro-
Ž .duced Fig. 3 a , by merely imposing some conserva-

tion laws.
Ž .Finally, Fig. 3 c , shows the vorticity relabeling

model applied to an even simpler spatial discretiza-
tion, namely ordinary central differences. It is in fact

Ž Ž ..more accurate that the Arakawa Jacobian Fig. 3 d ,
being slightly less diffusive. Thus, preserving areas
lets one use much simpler finite differences and still
maintain smooth, non-oscillatory solutions.

Any of the techniques presented here can be
combined with a more sophisticated underlying Eu-
lerian scheme. If we used a high-order, low-diffusion
upwinding scheme, for example, then area errors

Ž .would have been much less than in Fig. 3 a ; but
they would still increase over time. Applying the
vorticity relabeling would still improve the solution.

5. Discussion

The methods discussed here take into account one
large family of conservation laws. This possibility
raises many questions. What is the effect of using
these methods for very long times? What is their
effect on other conservation laws such as energy and
symplecticity? How well do they work on larger
applications such as the shallow water equations?
ŽFor level-set applications, a simpler update, adding
a constant to the advected field so that the area
inside one particular level set is preserved, may be

.preferable.
More theoretically, is it possible to regard the

‘equal area’ functions as defining a discrete phase
space in which consistent approximations can be
directly derived, instead of using brute force modifi-
cation of existing methods? While desirable, this
looks difficult, since we are not projecting to any
well-defined manifold. Consider the subset of R N 2q1

defined by

A v sA c , is1, . . . , N 2 .Ž . Ž .v i 0

This does have dimension 1 in general, but is form-
idably curled up on itself. It may be better to think of
the constrained phase space as the configurations
lying within some small distance of a manifold of
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dimension R N 2yOO ŽN ., as we are enforcing one curve’s
worth of constraints.
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