
rspa.royalsocietypublishing.org

Research
Cite this article: Celledoni E, McLachlan RI,
McLaren DI, Owren B, Quispel GRW. 2015
Discretization of polynomial vector fields by
polarization. Proc. R. Soc. A 471: 20150390.
http://dx.doi.org/10.1098/rspa.2015.0390

Received: 11 June 2015
Accepted: 3 November 2015

Subject Areas:
computational mathematics

Keywords:
geometric integration, Kahan’s method,
polarization

Author for correspondence:
Robert I. McLachlan
e-mail: r.mclachlan@massey.ac.nz

Discretization of polynomial
vector fields by polarization
Elena Celledoni1, Robert I. McLachlan2,

David I. McLaren3, Brynjulf Owren1

and G. R. W. Quispel3

1Department of Mathematical Sciences, NTNU,
Trondheim 7491, Norway
2Institute of Fundamental Sciences, Massey University,
Private Bag 11 222, Palmerston North 4442, New Zealand
3Department of Mathematics, La Trobe University, Bundoora,
Victoria 3083, Australia

A novel integration method for quadratic vector fields
was introduced by Kahan in 1993. Subsequently,
it was shown that Kahan’s method preserves a
(modified) measure and energy when applied
to quadratic Hamiltonian vector fields. Here we
generalize Kahan’s method to cubic resp. higher
degree polynomial vector fields and show that the
resulting discretization also preserves modified
versions of the measure and energy when applied to
cubic resp. higher degree polynomial Hamiltonian
vector fields.

1. Introduction: Kahan’s method for quadratic
vector fields

The study of ordinary differential equations (ODEs) goes
back centuries, to the time of Newton, Bernoulli, Euler
and contemporaries. Since the invention of the computer
in the 1940s much attention has been devoted to the
best ways to discretize differential equations so that they
can be solved numerically. Initially, the main emphasis
was on all-purpose methods (defined for all ODEs), such
as Runge–Kutta methods and linear multistep methods,
and their quantitative accuracy. During the last two
or three decades, however, interest has expanded to
considering special classes of ODEs and purpose-built
algorithms that preserve the special features of each class.
These novel methods are not only quantitatively but also
qualitatively accurate. This has resulted in methods that
preserve symmetries, first integrals, symplectic structure,
measure, foliations, Lyapunov functions, etc. These
methods are called geometric integration methods [1,2].

2015 The Author(s) Published by the Royal Society. All rights reserved.
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In 1993, Kahan introduced a numerical integration method for quadratic differential equations.
For the quadratic ODE

ẋ = f (x) := Q(x, x) + Bx + c, x ∈ R
n, (1.1)

(where x ∈ R
n, Q is an R

n-valued symmetric bilinear form, B ∈ R
n×n, and c ∈ R

n) it is defined by
the map

x �→ x′ :
x′ − x

h
= Q(x, x′) + 1

2
B(x + x′) + c, (1.2)

where h is the time step. Method (1.2) was introduced in W. Kahan (1993, unpublished lecture
notes) for two examples, a scalar Riccati equation and a two-dimensional Lotka–Volterra system
and written down in the general form (1.2) in [3] (see also references therein). Kahan wrote in the
prologue to W. Kahan (1993, Unpublished lecture notes),

I have used these unconventional methods for 24 years without quite understanding why
they work so well as they do, when they work. That is why I pray that some reader of these
notes will some day explain the methods’ behavior to me better than I can, and perhaps
improve them.

Initially, the mystery only deepened, for the Kahan method did not at first sight fit into
any of the standard methods of discretizing ODEs, nor into any of the new methods that were
developed as the field of geometric numerical integration grew. Yet in some sense Kahan’s prayer
has been fulfilled. The Kahan method has been found to have remarkable geometric properties;
the first example of this was the discovery that the method is measure-preserving when applied
to Kahan’s Lotka–Volterra system [4]. Studies have shown that the Kahan method preserves
complete integrability in many cases [5–14]. For a large class of Hamiltonian systems, the method
has a conserved quantity (related to energy) and an invariant measure. It is the restriction of a
Runge–Kutta method to quadratic vector fields [5]. However, so far only a part of the observed
behaviour of the method has been accounted for, and the ‘explanations’ to a degree only raise new
questions, for they reveal aspects of Runge–Kutta methods and of discrete integrability that were
previously unknown and unsuspected. Maps derived from the Kahan method are birational, that
is, they are elements of the Cremona group of birational automorphisms. The algebra, geometry
and dynamics of this group have been studied extensively [15,16], although the phenomena
illustrated by the Kahan method are apparently new.

Just one of the unusual features of Kahan’s method is that the formulation (1.2) is defined
only for quadratic differential equations. Although its Runge–Kutta formulation is defined for
all ODEs, the special geometric properties appear to hold only in the quadratic case. Yet there
is no apparent structure to the set of quadratic differential equations that would distinguish
them in this way, especially in relation to the birational maps. In this paper, we propose a
natural generalization of Kahan’s method to polynomial vector fields of higher degree and
show that it does inherit some of the geometric properties—invariant measures, first integrals
and integrability—of Kahan’s method in some cases. (An alternative generalization of Kahan’s
method to higher degree vector fields is considered in [17].)

We first observe that a homogeneous quadratic vector field f (x) can be expressed in terms of a
bilinear form Q(x, x), as in (1.1), using the technique of polarization:

Q(x, x′) = 1
2 (f (x + x′) − f (x) − f (x′)). (1.3)

Then the Kahan method can be obtained by polarizing the quadratic terms of the ODE, evaluating
them at (x, x′) and by replacing the linear and constant terms by the midpoint approximation.

Polarization is a map from a homogeneous polynomial to a symmetric multilinear form in
more variables. For example, the polarization of the cubic f (x) is the trilinear form

F(x1, x2, x3) = 1
6

∂

∂λ1

∂

∂λ2

∂

∂λ3
f (λ1x1 + λ2x2 + λ3x3)|λ=0,
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where x, x1, x2 and x3 are all vectors in R
n. This is equal to 1

6 of the coefficient of λ1λ2λ3 in
f (λ1x1 + λ2x2 + λ3x3). It satisfies

F(x, x, x) = f (x).

For example, consider the case x ∈ R
3 and write x = (y, z, w)T. Then the polarization of 3y2z is

y1y2z3 + y2y3z1 + y3y1z2 and the polarization of 6yzw is y1z2w3 + y2z3w1 + y3z1w2 + y1z3w2 +
y3z2w1 + y2z1w3. Polarization was used in [18] to obtain linearly implicit, integral-preserving
methods for Hamiltonian PDEs.

Polarization of a homogeneous vector field of degree k + 1 will lead to a multilinear form in k +
1 variables. We will call these variables x0, . . . , xk, where xk ∈ R

n. The generalization of the Kahan
method that we consider in this paper is to evaluate this multilinear form at k + 1 consecutive
time steps, leading to a k-step numerical integrator. In this way, the bilinear character of the Kahan
method carries over to higher degrees. The treatment of the linear term ẋ is no longer unique; here
we consider the simplest possible option of discretizing ẋ by (xk − x0)/(kh).

Definition 1.1. Let V = R
n and let F be the multilinear map from Vk+1 to R

n associated with
the homogeneous polynomial differential equation

ẋ = F(x, x, . . . , x) (=: f (x))

of degree k + 1 on V. The polar map associated with f is the birational map on Vk given by
(x0, . . . , xk−1) �→ (x1, . . . , xk), where xk is the solution of the linear system

xk − x0

kh
= F(x0, . . . , xk). (1.4)

Note that as both sides of (1.4) are linear in x0 and in xk, equation (1.4), the expressions for both
xk as a function of x0, . . . , xk−1, and for x0 as a function of x1, . . . , xk, are rational functions. Thus,
like the Kahan map, the polar map is birational. However, it is expected that the multilinearity
of (1.4) is more special than mere birationality; when k > 1 there are many birational integrators
formed from f that are not multilinear. The multistep leapfrog method

x2 − x0

2h
= f (x1)

is an example; maps of this form are not expected to have special geometric properties.

Proposition 1.2. The polar map of a homogeneous quadratic is its Kahan map. If a non-homogeneous
quadratic is suspended to a homogeneous form in one dimension higher (e.g. if ẋ = x2 + bx + c is replaced
by ẋ = x2 + bxy + cy2, ẏ = 0), then the polarization of the suspended vector field, projected to the original
phase space, is exactly the Kahan map of the non-homogeneous quadratic.

Proposition 1.3. The polar map is (i) self-adjoint (in the sense of symmetric multistep methods [1]) and
(ii) a general linear method restricted to vector fields that are homogeneous polynomials of degree k + 1.

Proof.

(i) Equation (1.4) is invariant under (x0, . . . , xk, h) �→ (xk, . . . , x0, −h).
(ii) From a standard identity in algebraic polarization [19, p. 110],

F(x0, . . . , xk) = 1
(k + 1)!

∑
1≤m≤k+1

0≤i1<···<im≤k

(−1)k+1−mf (xi1 + · · · + xim ),

where the sum is over all non-empty subsets of {0, . . . , k}. Using homogeneity of f , we get

F(x0, · · · , xk) = 1
(k + 1)!

∑
1≤m≤k+1

0≤i1<···<im≤k

(−1)k+1−mmk+1f
(

xi1 + · · · + xim
m

)
.

There are 2k+1 − 1 non-empty subsets of {0, . . . , k}, so in this form, the vector field f (x) is
evaluated at 2k+1 − 1 points, each of which is a convex combination of the xj. These points
may be taken to be the stage values of a general linear method. �
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General linear methods are a natural class of methods that include both Runge–Kutta and
linear multistep methods [20]. In this case, the method has k − 1 ‘auxiliary variables’ x0, . . . , xk−2
that are carried forward along with the ‘current point’ xk−1, but is ‘mono implicit’ in the sense
that only a single variable, xk, enters nonlinearly. (When f is degree k + 1, xk even enters linearly.)

For example, if f (x) is a homogeneous cubic then we can write

F(x0, x1, x2) = 1
6

(f (x0 + x1 + x2) − f (x0 + x1) − f (x0 + x2) − f (x1 + x2)

+ f (x0) + f (x1) + f (x2))

= 27
6

f
(

x0 + x1 + x2

3

)
− 8

6
f
(

x0 + x1

2

)
− 8

6
f
(

x0 + x2

2

)
− 8

6
f
(

x1 + x2

2

)

+ 1
6

f (x0) + 1
6

f (x1) + 1
6

f (x2).

The special behaviour of the Kahan method is seen most easily on the scalar ODE ẋ = x2,
for which it yields the map x0 �→ x1 = x0/(1 − hx0), a Möbius transformation which is easily
integrated. It can be seen to converge past the singularity at t = 1/x(0). By contrast, an explicit
method (like forward Euler) has no singularity, and an implicit method (like backward Euler)
does not define a smooth map ϕ : X → X for any sensible domain X ⊂ R. We first study the polar
map associated with a higher-degree analogue of this ODE.

Proposition 1.4. Let k be a positive integer. The polar map of ẋ = xk+1, x ∈ R, is explicitly integrable.

Proof. Equation (1.4) written at time step n becomes in this case

xn+k = xn + hkxnxn+1 . . . xn+k.

Dividing both sides by xn . . . xn+k,

1
xn . . . xn+k−1

= 1
xn+1 . . . xn+k

+ hk.

Thus, In := 1/(xn . . . xn+k−1) obeys

In = In−1 − hk

with solution

In = I0 − nhk.

Taking logs, log(xn) obeys the linear, constant-coefficient, non-autonomous difference equation

log(xn) + · · · + log(xn+k−1) = − log(In),

which is easily solved. �

The integrability in this example motivates our study of the polar map. Although not
exhaustive, one large class of vector fields for which the Kahan map is known to have special
properties is that of the Hamiltonian vector fields. For k = 1, the polar (Kahan) map derived
from Hamiltonian vector fields on Poisson spaces with constant Poisson structure is known to
have a conserved quantity and an invariant measure [5]. This explains their integrability in some
(low-dimensional) cases. We will now show how these phenomena generalize to the case k > 1.

2. Integrals of the polar map
We will now consider the case when f (x) is a homogeneous Hamiltonian vector field defined on
a symplectic vector space. The following result establishes the existence of several first integrals
of an iterate of the associated polar map. These integrals correspond to ‘modified energies’ of the
map as they all approximate the Hamiltonian in the limit of small step size.
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Proposition 2.1. Let H : V → R, the Hamiltonian, be a homogeneous polynomial of degree k + 2 on
R

n and let H be a symmetric (k + 2)-tensor such that H(x) = (1/(k + 2)!)H(x, x, . . . , x). Let Ω be a constant
invertible antisymmetric n × n matrix, and let ω be its associated symplectic form on V, i.e.

ω : V × V → R, ω(u, v) = uTΩv.

Let K = Ω−1. Then

(i) the Hamiltonian ODE on V associated with (H, Ω) is

ẋ = 1
(k + 1)!

KH(x, . . . , x, ·); (2.1)

(ii) the associated polar map is defined via

xk − x0

kh
= 1

(k + 1)!
KH(x0, . . . , xk, ·); (2.2)

(iii) the associated polar map (2.2) has k independent k-integrals

ω(x0, x1), ω(x1, x2), . . . , ω(xk−1, xk). (2.3)

Proof. First note that the components of the gradient ∇H(x) are homogeneous polynomials of
degree k + 1 in the components of x and we have

1
(k + 2)!

H(x, x, . . . , x) = H(x) = 1
k + 2

∇H(x)Tx,

so
1

(k + 1)!
H(x, . . . , x, ·) = ∇H(x).

This yields (i) and (ii).
Recall that a k-integral of a map is an invariant of the kth iterate of the map [21]. We first show

that ω(x0, x1) = ω(xk, xk+1). Writing a = kh/(k + 1)!, we have

ω(x0, x1) − ω(xk, xk+1) = ω(xk − aKH(x0, . . . , xk, ·), xk+1 − aKH(x1, . . . , xk+1, ·)) − ω(xk, xk+1)

= −aω(KH(x0, . . . , xk, ·), xk+1) + aω(KH(x1, . . . , xk+1, ·), xk)

+ a2ω(KH(x0, . . . , xk, ·), KH(x1, . . . , xk+1, ·))
= aH(x0, . . . , xk, xk+1) − aH(x1, . . . , xk+1, xk) + a2H(x1, . . . , xk+1, KH(x0, . . . , xk, ·))

= aH(x0, . . . , xk, xk+1) − aH(x1, . . . , xk+1, xk) + a2H
(

x1 . . . , xk+1,
(xk − x0)

a

)

= 0.

Now if I(x) is any k-integral of a map ϕ, then so is I ◦ ϕ(m) for any integer m [21]. This yields the
remaining k-integrals and concludes the proof. �

The integrals all approach the Hamiltonian of the original system as xm → x(mh), for in this
limit we have

1
h(k + 2)

ω(xm, xm+1) = 1
h(k + 2)

ω(xm, xm+1 − xm)

→ 1
k + 2

ω(x(mh), ẋ(mh))

= 1
k + 2

∇H(x(mh))Tx(mh)

= H(x(mh)).

Note that the k-integral ω(xk−1, xk) is a rational function of (x0, . . . , xk−1), for xk is defined through
(2.2); the other k-integrals are all quadratic.
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Analogous results hold for Poisson systems of the form (2.1), where K is antisymmetric but not
invertible. These can be established by performing a linear change of variables that puts K in its
Darboux normal form. Because the discretization method is linear, it commutes with this change
of variables.

3. Invariant measure of the polar map
The next proposition shows that the polar map in this case is also measure-preserving in the
extended phase space. The measure is ‘modified’ in the sense that it converges to the invariant
measure of the ODE in the limit of small step size.

Proposition 3.1. Let K be a constant antisymmetric n × n matrix and let H : Vk+2 → R be multilinear.
Let μ be a constant measure on V and let μk be the corresponding product measure on Vk. Then the
map on Vk induced by the polar map (1.4) associated with the homogeneous Hamiltonian vector field
ẋ = KH(x, x, . . . , x, ·) has the invariant measure

μk

det(I − cK H(x0, . . . , xk−1, ·, ·)) , (3.1)

where

c = h
(k − 1)!

.

Proof. First note that we have

1
(k + 2)!

H(x, x, . . . , x) = H(x) = 1
k + 2

∇H(x)Tx = 1
(k + 2)(k + 1)

xTH′′(x)x

and

∇H(x) = 1
k + 1

H′′(x)x.

So

1
(k + 1)!

H(x, . . . , x, ·) = ∇H(x),
1
k!
H(x, . . . , x, ·, ·) = H′′(x).

Let X = [xT
0 , . . . , xT

k−1]T. We want to prove that the Jacobian of the map

ϕ : (x0, . . . , xk−1) �→ (x′
0, . . . , x′

k−1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = x1

x′
1 = x2

...

x′
k−1 = xk = x0 + kh

(k + 1)!
KH(x0, . . . , xk, · )

has the following determinant:

det
∂ϕ

∂X
= det(I − cK H(x1, . . . , xk, ·, ·))

det(I − cK H(x0, . . . , xk−1, ·, ·)) .

We first observe that

det
∂ϕ

∂X
= det

∂x′
k−1

∂x0
= det

∂xk

∂x0
.
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This follows directly from the format of the Jacobian and in fact

det
∂ϕ

∂X
= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O I O · · · O

O O I
. . . O

...
. . .

. . .
. . .

...

O O · · · O I

∂xk

∂x0

∂xk

∂x1
· · · ∂xk

∂xk−2

∂xk

∂xk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det
∂xk

∂x0
.

Differentiating (2.2) on both sides with respect to x0, and using the symmetry of H we have

∂xk

∂x0
= I + cK H(x0, . . . , xk−1, ·, ·) ∂xk

∂x0
+ cK H(x1, . . . , xk, ·, ·)∂x0

∂x0
.

Rearranging the terms we obtain

∂xk

∂x0
= (I − cK H(x0, . . . , xk−1, ·, ·))−1(I + cK H(x1, . . . , xk, ·, ·))

and

det
∂xk

∂x0
= det(I + cK H(x1, . . . , xk, ·, ·))

det(I − cK H(x0, . . . , xk−1, ·, ·)) .

Using det(A) = det(AT) and the Sylvester determinant theorem det(I + AB) = det(I + BA) in the
numerator, we obtain

det
∂xk

∂x0
= det(I − cK H(x1, . . . , xk, ·, ·))

det(I − cK H(x0, . . . , xk−1, ·, ·)) ,

establishing the result. �

Note that in the case k = 1, in which case (2.2) reduces to the Kahan method for homogeneous
cubic Hamiltonians, the invariant measure (3.1) can be written as μ/ det(I − 1

2 hf ′(x)), which is the
form of the invariant measure for the Kahan method found in [5].

4. Integrability of the polar map
The next property of the polar map concerns a (k − 1)-dimensional symmetry group, so it is a
phenomenon that only appears for k > 1.

Proposition 4.1.

(i) The kth iterate of the polar map (2.2) is equivariant with respect to the scaling symmetry group
xm �→ λmxm, m = 0, . . . , k − 1, where

∏k−1
m=0 λm = 1, i.e. the map (2.2) has a (k − 1)-dimensional

k-symmetry group.
(ii) The measure (3.1) is invariant under this scaling group.

(iii) The integral
∏k−1

m=0 ω(xm, xm+1) is invariant under this scaling group.
(iv) When k is even, the 2-integrals

ω(x0, x1)ω(x2, x3) · · · ω(xk−2, xk−1)

and

ω(x1, x2)ω(x3, x4) · · · ω(xk−1, xk)

are invariant under this scaling group.
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Proof.

(i) Under the map xm �→ λmxm, the final equation defining the polar map, (2.2), is
transformed to

λ0xk = λ0x0 + khK
1

(k + 1)!
H(λ0x0, λ1x1, . . . , λk−1xk−1, λ0xk, ·),

which is identical to (2.2) under the condition
∏k−1

m=0 λm = 1. Therefore, the function
ϕ(x0, . . . , xk−1) (= xk) defined through the solution of (2.2) scales as ϕ(x0, . . . , xk−1) �→
λ0ϕ(x0, . . . , xk−1). The kth iterate of the polar map can be written as

x(k)
0 = ϕ(x0, . . . , xk−1)

x(k)
1 = ϕ(x1, . . . , xk)

· · ·
x(k)

k−1 = ϕ(xk−1, . . . , x2k−2)

and each equation is invariant under the action xm �→ λmod(m,k)xm induced on the iterates
of the map.

(ii) Follows from H(x0, . . . , xk−1, ·, ·) = H(λ0x0, . . . , λk−1xk−1, ·, ·).
(iii) We have

k−1∏
m=0

ω(xm, xm+1) �→
k−1∏
m=0

ω(λmxm, λm+1xm+1)

=
k−1∏
m=0

λ2
m

k−1∏
m=0

ω(xm, xm+1)

=
k−1∏
m=0

ω(xm, xm+1),

which establishes the result.
(iv) Under the symmetry, each of the given 2-integrals is multiplied by a factor

∏k−1
m=0 λm,

which establishes the result. �

These results yield a five-parameter family of integrable four-dimensional rational maps.

Corollary 4.2. The polar map is completely integrable in the case k = 2, n = 2.

Proof. The second iterate of the polar map in this case has a one-dimensional measure-
preserving symmetry group. The map thus descends to a measure-preserving map on the
three-dimensional quotient [22]. The two integrals of the second iterate of the polar map are
invariant under the symmetry and hence also pass to the quotient. This yields a three-dimensional
measure-preserving map with two integrals thus integrable [23]. The reconstruction dynamics
obey a one-dimensional, linear, constant-coefficient, non-autonomous difference equation and
hence are integrable. From the integration of the second iterate, the integration of the polar map
itself is immediate. �

Example 4.3. To be fully explicit, we give here the integrable rational map obtained in the case
k = 2, n = 2. Let (q, p) be coordinates on V = R

2 and let the Poisson tensor and Hamiltonian be

K =
(

0 1
−1 0

)
, H = aq4 + 4bq3p + 6cq2p2 + 4dqp3 + ep4.
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Then the polar map on V2 is (q0, p0, q1, p1) �→ (q1, p1, q2, p2), with

q2 = q0 + 2h(bq2
0q1 + c(2p0q0q1 + p1q2

0) + d(2p0p1q0 + p2
0q1) + ep2

0p1)

1 − 4h2�

and p2 = p0 − 2h(aq2
0q1 + b(2p0q0q1 + p1q2

0) + c(2p0p1q0 + p2
0q1) + dp2

0p1)

1 − 4h2�
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where

� =
∣∣∣∣∣c d
d e

∣∣∣∣∣ p2
0p2

1 +
∣∣∣∣∣b c
d e

∣∣∣∣∣ (p2
0p1q1 + p0p2

1q0) +
∣∣∣∣∣b c
c d

∣∣∣∣∣ (p2
0q2

1 + p2
1q2

0)

+
∣∣∣∣∣a b
c d

∣∣∣∣∣ (p1q2
0q1 + p0q0q2

1) +
∣∣∣∣∣a c
c e

∣∣∣∣∣ p0p1q0q1 +
∣∣∣∣∣a b
b c

∣∣∣∣∣ q2
0q2

1.

The map is birational of degree 3 over degree 4. The two 2-integrals are

q0p1 − q1p0 and q1p2 − p1q2,

where q2 and p2 are given in (4.1). The invariant measure is

dq0 ∧ dp0 ∧ dq1 ∧ dp1

1 − 4h2�
.

If the degree k > 2 or the dimension n > 2 then the geometric properties described above
are not enough to ensure integrability. Indeed, we find that the polar map associated with a
homogeneous planar quintic Hamiltonian (i.e. k = 3, n = 2) does not pass the entropy test for
complete integrability [24,25].
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