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Abstract. We propose a “Newton–Taylor” iteration for solving the implicit equations of sym-
plectic Runge–Kutta methods, using the Jacobian of the vector field and matrix-vector multiplica-
tions whose extra cost for certain structured problems is negligible. The structure of Hamiltonian
ODEs allows this very simple iteration to be effective. The iteration reduces the number of vector
field evaluations almost to that of Newton’s method, often only one or two per time step, making
symplectic Runge–Kutta methods more efficient even at relatively large time steps.
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1. Introduction. Symplectic integrators based on splitting, such as the leapfrog
method for separable Hamiltonian systems, are fast and simple and give very good re-
sults for long simulations [8]. They are widely, almost universally, used in applications
from accelerator physics to molecular dynamics to celestial mechanics [16]. However,
the only symplectic integrators for general Hamiltonian systems are implicit, such as
the Gaussian Runge–Kutta methods [11], which has tended to limit their popularity.
(The implicit equations must be solved to within round-off error, to preserve symplec-
ticity.) Hairer, Lubich, and Wanner [8] have studied the implementation issues and
found the simple (“standard”) iteration, (4) below, superior to Newton’s method; for
very small error tolerances it can even compete with high-order methods based on
splitting and composition. However, for the relatively low orders and large time steps
often used in long symplectic integrations, the convergence of the standard iteration
deteriorates, making the method more expensive, which defeats the purpose of using
a large time step.

For other applications of implicit methods, there are methods in which the linear
equations defining the Newton step are solved only approximately. In the inexact
Newton method an (e.g., Krylov or Chebyshev) iterative method is applied [2, 4, 5];
in the Newton-chord method [18] the Jacobian itself is approximated to simplify the
solution step. In the Jacobian-free-Newton–Krylov method [12] the Jacobian-vector
multiplications are approximated by finite differences, so the Jacobian itself is never
formed.

The application to Hamiltonian systems has a number of special features that
lead us to propose a very simple inexact Newton method that, for many structured
problems, costs only a constant factor close to 1 times the cost of the standard iter-
ation, yet has a convergence rate very close to Newton’s method. For the midpoint
rule, for example, the method may require only one or two evaluations of the vector
field per time step.
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The method uses the Jacobian of the vector field and performs matrix-vector
multiplications. It is efficient when those two operations are cheap compared to the
cost of evaluating the vector field itself. Implementations of implicit methods using
Newton’s method and direct linear solves try to balance the number of Jacobian
factorizations against the number of vector field evaluations [19]. In contrast, our
goal is to minimize the number of vector field evaluations without performing any
operations that cost substantially (e.g., asymptotically, for large systems) more than
a vector field evaluation.

First, consider N -body problems with Hamiltonians of the form

H =
N∑

i,j=1

piG(‖qi − qj‖)pj + V (‖qi − qj‖).(1)

The cost of evaluating the vector field directly is O(N2). If G, V , and their derivatives
are cheap, then the cost is dominated by the cost of computing ‖qi − qj‖, and the
Jacobian is available essentially for free. This has been exploited for separable systems
(G = 1) by designing efficient high-order symplectic integrators using the Jacobian
and matrix-vector multiplications [3, 16]. On the other hand, if G and V are special
functions, then it often happens that it is relatively cheap to compute their derivatives
at the same time. (This happens in the first example below, where G is an exponential
or a Bessel function.) The matrix-vector multiplications, on the other hand, are also
O(N2) and hence carry a constant work overhead compared to the cost of evaluating
the vector field.

Second, consider lattice systems with independent variables indexed by a lattice
L containing N points and a Hamiltonian of the form

H =
∑
i∈L

F (xi+Δ),(2)

where Δ ⊂ L is a fixed template specifying which sites are coupled. The cost of
computing the vector field is O(N). The Jacobian matrix has only O(N) nonzero
entries, and hence matrix-vector multiplications cost O(N). Again, the cost of forming
and multiplying by the Jacobian is negligible for certain functions F .

2. The Newton–Taylor iteration. We describe the algorithm for the implicit
midpoint rule. (Its extension to any implicit Runge–Kutta method is straightforward.)
For the ODE ẋ = f(x) we are required to solve [11]

g(z) := z − 1

2
Δtf(x0 + z) = 0(3)

for z, where Δt is the time step. (The final update is x0 �→ x1 := x0 + 2z.) The
standard fixed-point iteration is

zk+1 =
1

2
Δtf(x0 + zk) = zk − g(zk),(4)

and Newton’s method is

zk+1 = zk − g′(zk)−1g(zk) = zk − (I −Ak)
−1g(zk),(5)

where Ak = 1
2Δtf ′(x0 + zk).
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We replace the iteration matrix (I −Ak)
−1 by its Taylor series

∑M
i=0 A

i
k of order

M to give the following (Newton–Taylor) outer iteration.
Outer iteration:

zk+1 = h(zk) := zk −
(

M∑
i=0

Ai
k

)
g(zk),(6)

which can be evaluated using one vector field, Jacobian evaluation at zk, and M
matrix-vector multiplications.

The analysis of the algorithm is standard in the context of inexact Newton meth-
ods [6, 7]. However, it is simpler here because of the simple iteration. Let z∗ be the
desired solution so that g(z∗) = 0, and let ek = zk − z∗ be the error in the current
approximation. Then by Taylor’s theorem we have for some θ ∈ [0, 1],

ek+1 = h′(zk)ek +
1

2
h′′(zk + θ(zk+1 − zk))(ek, ek)

=

(
I −

(
M∑
i=0

Ai
k

)
(I −Ak)

)
ek +

1

2
h′′(zk + θ(zk+1 − zk))(ek, ek)

= AM+1
k ek + P (ek, ek) + O(‖ek‖3),

(7)

where P = 1
2h

′′(z∗) = O((Δt)2). The convergence rate of the modified iteration (6) is

therefore ρ(AM+1
k ) = ρ(Ak)

M+1 = O((Δt)M+1), where ρ(Ak) is the convergence rate
of the standard iteration. Not only is the modified iteration higher-order in the time
step, but (at the linear level, i.e., for sufficiently small ek) one step of the modified
iteration is identical to M + 1 steps of the standard iteration.1 It is therefore worth
increasing M by one precisely when a Jacobian-vector multiplication is cheaper than
evaluating the vector field.

We also conclude from (7) that the modified iteration (6) converges for sufficiently
small ‖e0‖ if and only if the simple iteration converges. We therefore henceforth
assume that ρ(Ak) < 1.

If M is taken too large, however, then ek+1 will be dominated by the quadratic
term in (7). Note that as M → ∞, AM+1

k → 0 and P → P∞ (say), the iteration tensor
for Newton’s method. In fact, P = P∞ +O((Δt)M+1), so as M → ∞ the behavior of
the modified iteration tends to that of Newton’s method. One should therefore adapt
M depending on the current iteration, so that ‖AM+1

k ek‖ ≈ ‖P (ek, ek)‖. This gives
the following algorithm, in which (6) is implemented.

Inner iteration:

1. Given zk, set w0 = g(zk);
2. while ‖wm+1 − wm‖ > max(c‖w0‖2, tol), set wm+1 = w0 + Akw

m;
3. set zk+1 = zk − wm.

Here tol is the tolerance, usually close to machine precision, to which the Runge–Kutta
equations are to be solved. The (“forcing”) parameter c depends on the problem and
is related to the norm of P , i.e., to the second derivatives of the vector field [7]. Note
that w0 is the update to zk in the standard iteration and hence, as long as ρ(Ak) is
bounded away from 1, w0 can be used as an approximation of ek.

1Often, higher-order methods have large error constants, rendering them useless unless the time
step is sufficiently small. This does not happen here.
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This algorithm will lead to the number M of inner iterations roughly doubling
each outer iteration, just as the error decreases in Newton’s method.

It is theoretically possible, as in the automatic detection of stiffness [11] and the
traditional convergence tests for implicit methods [19], to maintain running estimates
of the slowly varying parameters ρ(Ak) and the norm of P , and hence adapt the
choice of M more precisely. However, this seems to be more difficult in the present
context than in those just cited, because (i) we do relatively few inner iterations
and outer iterations, so there is little data on which to base the estimates; (ii) the
last iterations may be polluted by round-off error; (iii) the absolute values of the
eigenvalues of the Hamiltonian matrix Ak occur with multiplicity 2 (if the eigenvalue
is real or imaginary) or 4 (if the eigenvalue is complex), which means that even in the
best case, when Ak is not severely nonnormal, an estimate of the convergence rate of
the inner iteration can be obtained only from four consecutive iterations; (iv) if the
time step is large, as we hope to achieve, then the parameters vary quite quickly (see
the first example below).

A more positive viewpoint is to consider these factors as advantages, as they
support the use of a very simple algorithm! Most of the experiments reported below
use c = 1, tol=10−15, and ‖ · ‖∞ error norms.

To further reduce the number of evaluations of f we terminate the outer iteration
(6) at zk+1 when ‖g(zk)‖ < tol2, where tol2 > tol . Under the model used for ter-
minating the inner iterations, one reasonable choice is to take tol2 =

√
tol/c, as the

final iteration will then take the error down to about 2tol . This saves one evaluation
of f and is the termination criterion used in our experiments. If long-term growth of
round-off error is a concern, these criteria may need to be tightened.

A good initial guess is essential for the performance of this method, as one wants
the underlying Newton’s method to stay close to the root where convergence is quick-
est. For the midpoint rule, we have used polynomial extrapolation from the previous
time steps [8]. The order s of extrapolation is adapted based on the decrease of the
backward differences, as follows.

Initialization iteration:

1. Set w0 = zn;
2. while ‖∇s+1zn‖ < ‖∇szn‖, set ws+1 = ws + ∇s+1zn;
3. set z0

n+1 = ws.
The modified iteration also works successfully for higher-order Runge–Kutta me-

thods. The tensor product structure of the linear equations means that only s matrix-
vector products are needed per inner iteration for an s-stage method. For systems in
R

N , 2N2s + 2Ns2 operations are required per inner iteration, so the overhead does
grow with increasing s, but not at leading (O(N2)) order.

3. Other inexact Newton iterations (see [10, 13, 14]). We are approxi-

mating the solution of (I − B)δz = g by the Taylor polynomial
∑M

i=0 B
ig, where

for a general Runge–Kutta method with coefficients alj the matrix B is a block ma-
trix whose (l, j) block is given by Δtaljf

′(Zj), where Zj are the stage values and
f ′(z) = JH ′′(z). We have seen that this is a reasonable approximation, but aren’t
there better approximations? Krylov methods form the best (in some sense) approxi-
mation to δz of the form p(B)g over all polynomials p of degree M ; Faber methods use
the Faber polynomial, which is the best (in some sense) approximation of (1− t)−1 on
Ω ⊂ C, where Ω contains the spectrum of B. These satisfy an (expensive) long-term
recurrence; hence one often chooses Ω to be an ellipse, in which case the Faber polyno-
mials are Chebyshev polynomials which satisfy a 2-term recurrence. In this context,
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the Taylor polynomials are themselves the special case of the Chebyshev polynomials,
obtained when the ellipse is a circle centered on the origin.

In this case the best approximation property is easily seen. Let a(t) be a complex
function analytic on a disk of radius r centered (now for convenience only) on the
origin. The powers tn are orthogonal with respect to the L2-inner product (a, b) =∫
|t|≤r

a(t)b(t) |dt|2, and hence, from the general theory of orthogonal functions, the

expansion of a(t) in powers of t—the Taylor polynomial—is the best L2 approximation
to a(t) by a polynomial.

The role of two key features of Hamiltonian systems and of symplectic integrators
is now apparent. They both stem from the fact that the Jacobian f ′ is a Hamiltonian
matrix whose eigenvalues exhibit “Hamiltonian symmetry”; namely, they occur in λ,
−λ, λ, −λ quadruplets. For the midpoint rule, B = 1

2Δtf ′(Z1) is also Hamiltonian.
First, for the implicit equations to have a solution we need to assume Re(λ(B)) <

1, which implies Re(λ(B)) > −1. We can also assume |Im(λ(B))| < 1, for otherwise
the fast oscillations are very poorly represented by the integrator and can even desta-
bilize the calculation. (The currently known integrators that are effective when the
fast modes are not resolved are quite different; they are explicit and nonsymplectic
[8].) Therefore, the assumption ρ(B) < 1 that is required for the Taylor series to con-
verge is not overly restrictive. (Applications where Krylov and Chebyshev iterations
are effective typically have Re(λ(B)) very large and negative [2, 12].)

Second, the eigenvalue symmetry means that a disk centered on 0, enclosing
λ(B), will tend to be a much better approximation of λ(B) than in the general,
non-Hamiltonian, case. Further, the Taylor polynomial requires no knowledge of the
spectrum and is the best approximation on all disks centered on the origin (i.e., the
best regardless of ρ(B)).

The eigenvalue symmetry does mean that an ellipse centered on 0 with real and
imaginary axes is never a worse approximation to λ(B) than the disk. If this el-
lipse were known, then a Chebyshev polynomial would be a better approximation to
(1 − t)−1, and would lead to faster convergence, than the Taylor polynomial. Two
factors suggest that this advantage will be difficult to exploit in our case. First, for
Hamiltonian systems the focal interval of the bounding ellipse can be either real or
imaginary, typically alternating between the two, making an accurate estimate of it
more difficult; see the first example below. (Existing applications of Chebyshev poly-
nomials use far more iterations than we are proposing here, because they are for ρ(B)
large, and hence they can afford to do a few secondary iterations to estimate the ellipse
that bounds λ(B).) Second, when ρ(B) < 1 the convergence advantage of Chebyshev
over Taylor polynomials is not that great. For small ρ(B) the Chebyshev convergence
factor (see, e.g., [13]) is at best 1

2ρ(B) and achieves that only when λ(B) is entirely
real or entirely imaginary. We leave a fuller comparison of the two approaches for the
future.

For the midpoint rule—or indeed for any 1-stage Runge–Kutta method—the it-
eration matrix B is Hamiltonian. This still holds for almost all 2-stage Runge–Kutta
methods, as we now show. If a12a21 
= 0, then B is a Hamiltonian matrix because it
can be written as a product of an antisymmetric and a symmetric matrix:

B = Δt

(
a11JH

′′(Z1) a12JH
′′(Z2)

a21JH
′′(Z1) a22JH

′′(Z2)

)

= Δt

(
a11

a21
J J

J a22

a12
J

)(
a21H

′′(Z1) 0
0 a12H

′′(Z2)

)
.
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(The symplectic structure, given by the first matrix factor, is noncanonical, but
this does not affect the eigenvalue symmetry.) On the other hand, if a12 = 0, say,
then B is block lower triangular and not Hamiltonian. However, its eigenvalues are
Δta11λ(JH ′′(Z1)) ∪ Δta22λ(JH ′′(Z2)), which do have Hamiltonian symmetry.

For Runge–Kutta methods with ≥ 3 stages the iteration matrix is not in general
Hamiltonian, and its eigenvalues need not have Hamiltonian symmetry, numerical
examples being easy to construct. In fact, attempting to express the iteration matrix
for a 3-stage Runge–Kutta method in the form of an antisymmetric matrix αlj ⊗ J
times the symmetric matrix

∑
k βljkH

′′(Zk) (where αlj = αjl, βljk = βjlk) yields, on
eliminating the variables αlj , βljk, the result that such a factorization exists only if
a13a21a32 = a12a23a31, which does not hold for the 3-stage Gaussian Runge–Kutta.
Nevertheless, the iteration matrix will always be nearly Hamiltonian, because the
matrices H ′′(Zk) are all equal to within O(Δt), and in the case of equal matrices such
a factorization always exists, namely aljJH

′′(Z) = (alj⊗J)(I⊗H ′′(Z)). Therefore the
eigenvalues of the iteration matrix will always be close to obeying the same symmetry
as those of Hamiltonian matrices.

In other applications, the use of preconditioners is vital [5, 12]. Preconditioning
will work here too—decreasing ρ(B), but also destroying, in general, the Hamiltonian
structure of B—although not generally as well as in the stiff, dissipative case. We do so
few inner iterations anyway that the preconditioner has to be very cheap or extremely
effective. An example of a use of a preconditioner, or equivalently a Newton-chord
iteration, for a Hamiltonian system is given in [1] for the Korteweg–de Vries equation
ut = uux + uxxx. The Jacobian is frozen at the stiff term ∂xxx. A second example is
given in the solar system study below.

4. Examples. The following example arose in a study of the dynamics of cer-
tain curves called momentum sheets in a generalized Camassa–Holm equation that is
thought to govern certain classes of solitary waves in shallow water [15]. The curve
motion is governed by a PDE which is discretized by placing particles at positions
qi ∈ R

2 on the curve. Each particle carries momentum pi ∈ R
2, and the Hamiltonian

is

H =
n∑

i=1

(pi · pj)G(‖qi − qj‖),(8)

which describes geodesics on a Riemannian manifold with metric the inverse of the
matrix of G’s. The three kernels G(r) of most interest in the application were the
Gaussian exp(−r2), the modified Bessel functions K0(r) and rK1(r) (with the singu-
larity at r = 0 appropriately removed). Note that we have, e.g., K ′

0(r) = −K1(r) and
K ′′

0 (r) = K0(r)+K1(r)/r. Since K0 and K ′
0 already occur in the vector field, no new

Bessel functions have to be computed for the Jacobian.

The motion of the sheet for the Gaussian kernel is shown in Figure 1 for time
50, during which it undergoes a large-scale evolution. There are 50 particles, and the
total dimension of the system is 200. To give an idea of the time scale of this problem,
both the standard and modified iterations converge at Δt = 6 but not at Δt = 7. The
final position error is 0.7% at Δt = 1 and 15.3% at Δt = 5. The maximum relative
energy error during the simulation is 0.2% at Δt = 1. The spectrum is also shown in
Figure 1. The focal interval of the bounding ellipse changes from imaginary to real,
to imaginary, and back to real, although the ellipse never becomes very eccentric, and
a circle is always a reasonable approximation to the spectrum.
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Fig. 1. Top: Snapshots of the motion of the geodesic curve motion, for t ∈ [0, 50]. Middle:
Spectrum of the Jacobian at the initial and final times. Bottom: Evolution of the eigenvalues of
maximum real and imaginary parts.

The results are shown in Table 1 and Figure 2. The number of outer iterations
(equivalently, number of vector field evaluations) per time step is very close to that
used by Newton’s method. For the Gaussian kernel with the midpoint rule, one could
use Δt = 0.4 and do about 1 evaluation of f per step (the standard iteration needs
6), achieving a final position error of 0.0011; or one could use Δt = 0.8 and do about
2 evaluations of f per step (the standard iteration needs 10), achieving a final position
error of 0.0045. Clearly, in this problem there is no advantage in the larger time step.
But even Δt = 0.4 is relatively large for this problem and is analogous to the large
time steps often used in molecular dynamics problems.

A second observation is that even with the simplest implementation possible,
namely using c = 1 in the termination criterion for the inner iteration, we have
Nouter + N inner ≈ N std across the whole range of time steps. The algorithm is
roughly equivalent to exchanging most iterates of the standard iteration (4) with a
matrix-vector multiplication.
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Table 1

Results for the curve geodesic problem (8) shown in Figure 1 with 50 points and dimension
200. The integration time is 50 and the time step is Δt = 50/steps. Nouter is the mean number of
outer iterations (= number of vector field evaluations) per time step used by the modified iteration
equation (6) (including the initial steps, when the order of the initialization is necessarily lower and
more iterations are needed). N inner is the mean number of inner iterations (= number of matrix-
vector multiplications) per time step. Nstd is the mean number of vector field evaluations per time
step used by the standard iteration (4). CPU times in seconds are shown for the two methods in a
MATLAB implementation. The same extrapolation method is used for initialization for all cases.
Its order ranges from 4 (for large time steps) to 14 (for small time steps).

G(r) Order Steps Nstd Nouter N inner CPUstd CPU

e−r2 2 10 42.10 4.60 38.50 6.30 1.77
14 28.07 3.79 24.50 6.03 1.99
20 20.65 3.30 17.85 6.18 2.37
28 16.39 3.04 13.75 6.87 3.12
40 13.13 2.53 10.95 7.87 3.52
57 10.49 2.07 8.56 8.82 4.10
80 8.26 1.90 6.50 9.80 5.34

113 6.09 1.34 4.89 10.29 5.36
160 4.32 1.06 3.24 10.36 6.02
226 3.27 1.03 2.24 11.19 8.19
320 2.98 1.02 1.96 14.53 11.36

e−r2 4 6 35.83 5.17 37.17 5.20 2.00
10 23.00 4.10 22.30 5.30 2.52
20 15.30 3.10 13.40 7.11 3.74
57 9.32 2.05 7.63 12.38 6.99

160 4.35 1.07 3.36 17.04 10.73
K0(r) 2 20 19.55 2.45 17.20 12.74 2.82

40 8.95 1.50 7.48 11.88 3.04
80 4.90 1.16 3.85 11.90 4.64

160 3.27 1.05 2.19 15.87 8.25

For the Gaussian kernel and fourth-order 2-stage Gaussian Runge–Kutta, the
position errors are now only 0.2% at Δt = 5 and 4 × 10−6 at Δt = 1, and the
maximum relative energy errors 0.3% at Δt = 5 and 3 × 10−5 at Δt = 1. The
improvements to the fourth-order method are very similar to those enjoyed by the
second-order method. The number of outer iterations is reduced slightly, and the
number of inner iterations is significantly reduced at large time steps, because the
spectral radius of (aij) is reduced by a factor 0.58. For the same reason, the fourth-
order method converges for larger time steps, failing to converge only at Δt = 9. For
this problem, the fourth-order method always gives a smaller error for a given work
(see Figure 2). Both methods can be used satisfactorily at large time steps.

The speedup in CPU time is not as great as the reduction in function evaluations.
It is generally a factor of about 2 in this MATLAB implementation—more for larger
time steps, a bit less if the order is increased to 4.

The following refinement of the algorithm yields further improvement in the CPU
times: On outer iterations after the first, update the Jacobian only if the norm of
the previous update of z is greater than some chosen tolerance. This use of inexact
Jacobians slows the convergence of both the inner and outer iterations, but (depending
on the complexity of the Jacobian) can nevertheless lead to an overall speedup. In the
first example of Table 1 (Gaussian kernel with the midpoint rule), with tolerance 0.1
the speedup factor was in the range 1.3–1.38 for the critical range of 20–80 time steps
(0.625 ≤ Δt ≤ 2.5). Clearly, the choice of the tolerance is crucial and is problem-
dependent.
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Fig. 2. Curve geodesics problem. The data from Table 1 compared for efficiency (G(r) = e−r2 ,
orders 2 and 4).

Sample results are also shown for the more expensive Bessel function kernel K0(r)
with the midpoint rule. K0(r) can be evaluated in about 78 multiplications, and K0(r)
and K1(r) together in about 90 multiplications, in MATLAB, which calls a Fortran
subroutine. Now the vector field evaluations occupy a larger fraction of the CPU
time, and hence the observed speedups are greater.

Two further examples are taken from the results in [8] in a direct comparison with
the Fortran code gnicode.2 They are both for separable Hamiltonians of the form H =(∑n

i=1 p
2
i /mi

)
+ V (q), and in [8] the standard implementation of Gaussian Runge–

Kutta methods is compared to explicit composition methods. For these Hamiltonians
the momenta at the internal stages can be eliminated, leaving a nonlinear equation
for the positions whose Jacobian is now a block matrix with (l, j) block given by
δljI − ((ΔtA)2)ljV

′′(Qj), where A is the matrix of the Butcher tableau and the Qj

are the stage values of the positions. This halves the number of standard iterations,

2The results for gnicode shown in Table 2 are better than those given in [8], because the code
was improved further since the book was published [9].
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Table 2

Kepler problem. One period of the 2D Kepler problem with period 2π and eccentricity 0.6 is
integrated using the standard iteration in the gnicode Fortran implementation and using the modified
iteration in an adaptation of the same code. CPU times are reported for the GNU Fortran optimizing
compiler 3.4 on a 1GHz G4 Mac. The same initialization is used in each case (extrapolation for
order 2, and an order s + 2 Runge–Kutta-type method for order 2s ≥ 4). Nf is the total number of
vector field evaluations including those needed for initialization.

Order Δt Nf Nf Ninner Nouter Nouter N inner CPU time μs
Std Mod. Std Mod. Std Mod.

2 2π/50 383 110 242 7.68 2.20 4.84 349 185
2π/100 399 142 229 3.99 1.42 2.29 439 281
2π/200 511 225 284 2.56 1.12 1.42 653 494
2π/400 590 407 438 1.47 1.02 1.09 988 925

4 2π/25 375 143 110 7.50 1.86 4.40 261 133
2π/50 547 235 142 5.47 1.35 2.84 379 203
2π/100 881 427 194 4.41 1.13 1.94 611 352
2π/200 1405 805 279 3.51 1.01 1.40 989 647
2π/400 2521 1601 447 3.15 1.00 1.12 1764 1252

8 2π/25 525 213 75 5.25 1.63 3.00 327 207
2π/50 791 343 99 3.96 1.22 1.98 494 316
2π/100 1215 627 141 3.04 1.07 1.41 771 557
2π/200 1707 1203 222 2.13 1.00 1.11 1143 1039
2π/400 2779 2403 401 1.74 1.00 1.00 1913 2045

12 2π/25 679 265 70 4.53 1.43 2.80 414 274
2π/50 951 447 83 3.17 1.16 1.66 591 424
2π/100 1255 805 123 2.09 1.01 1.23 829 745
2π/200 1923 1605 206 1.60 1.00 1.03 1328 1444
2π/400 3367 3205 401 1.40 1.00 1.00 2371 2864

somewhat reduces the number of outer iterations, and halves the number of inner
iterations and the size of the matrices involved. We present results for the relative
energy errors; results for the global errors are similar.

The first example is the two-dimensional Kepler problem with H = 1
2 (p2

1 + p2
2) +

1/
√
q2
1 + q2

2 , for which results are given in Table 2. Despite the low dimension, the
completely different implementation, and the fact that the vector field evaluations do
not dominate the CPU time (the single square root costs only about 7 multiplications)
the results are strikingly similar to those for the curve geodesic problem.

The second example is the outer solar system problem. The sun, four outer
planets, and Pluto are evolved in standard coordinates for 500, 000 days. Again, the
problem is not very large, and the n(n− 1)/2 = 15 square roots actually number less
than the 3n = 18 degrees of freedom. Still, the results are similar to those of the
previous two examples. For this problem due to the scaling of the variables it was
advantageous to adapt the forcing parameter c that controls the termination of the
inner iteration. The results are shown for c = 100 in Figure 3. The order 4 implicit
and explicit methods now have equal performance for time steps less than about 120
days (indicated by an arrow). The order 8 and 12 methods beat the explicit methods
for relative energy errors less than about 10−7.

Because the system is nearly integrable, a good preconditioner is available in the
form of the product of the exact inverses of the Jacobians of the sun-planet two-
body systems. These can be calculated explicitly in terms of scalar products. The
convergence factor ρ(A) is reduced dramatically, so that only one inner iteration per
Newton step is required. However, the preconditioning is expensive, and it is not yet
clear whether the extra level of complexity is justified. (Besides, explicit methods can
also exploit the near integrability.)
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Fig. 3. Outer solar system problem. Gaussian Runge–Kutta methods of orders 2, 4, 8, and
12 compared in the standard and modified Fortran implementations. Results for three explicit com-
position methods are also shown, of orders 2 (1 stage leapfrog), 4 (5 stages), and 8 (17 stages),
gnicode’s methods 21, 45, and 817, respectively. The performance of the implicit methods is best
when the mean number of outer iterations drops to 1, which occurs at the points marked by arrows.
These correspond to a time step of 120 days for order 4 and 240 days for order 8. The order 12
results are influenced by round-off for time steps less than 300 days.

5. Conclusions. Even if the vector field has no particular structure, the modi-
fied iteration (6) is likely to be an improvement over the standard iteration (4). The
only unavoidable requirement is that we need ρ(A) < 1; i.e., the problem must not be
stiff. However, the case ρ(A) > 1 takes us into the entirely different realm of highly
oscillatory systems [8]. Therefore the present algorithm is most suited to nonstiff
problems in which implicit methods are needed for their geometric properties such as
symplecticity.

Many large physical systems have an appropriate structure which reduces the cost
of the integration considerably, down to one or two vector field evaluations per time
step. Of course, some systems have so much structure that it is possible to exploit
it directly in solving the implicit Runge–Kutta equations. For example, for N -body
systems one could use a fast multipole method, and for smooth lattice systems such as
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those arising as semidiscretizations of PDEs one could use multigrid. However, these
approaches are not only vastly more complicated than the present proposal, they are
also much more problem-specific.

It is tempting to ask whether the information contained in the Jacobians can
be used for purposes other than just speeding up the convergence. Unfortunately,
there are no symplectic multiderivative Runge–Kutta methods [8], nor are there any
“elementary differential” Runge–Kutta methods using just the Jacobian—the simplest
is the midpoint rule applied to the modified Hamiltonian H + 1

24 (Δt)2fTH ′′f , which
requires the second derivative of the vector field f . There are Runge–Kutta-like
methods using f ′ [17], but these are not very developed.

The algorithm presented here is a reasonable one because of the special (Hamil-
tonian) structure of the problem. It is tempting to consider further specializations of
this structure for which the algorithm can be improved further. Directions for future
research include automatic selection of the tolerances and exploring cases in which
inexact Jacobians, Chebyshev iteration, and/or preconditioners should be used.

Acknowledgements. I would like to thank Stephen Marsland for discussions
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