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Abstract. Previously, it has been shown that discretizing a multi-Hamiltonian PDE in space
and time with partitioned Runge–Kutta methods gives rise to a system of equations that formally
satisfy a discrete multisymplectic conservation law. However, these previous studies use the same
partitioning of the variables into two parts in both space and time. This gives rise to a large number
of cases to be considered, each with its own set of conditions to be satisfied. We present here
a much simpler set of conditions, covering all of these cases, where the variables are partitioned
independently in space and time into an arbitrary number of parts. In general, it is not known when
such a discretization of a multi-Hamiltonian PDE will give rise to a well-defined numerical integrator.
However, a numerical integrator that is explicit will typically be well defined. In this paper, we give
sufficient conditions on a multi-Hamiltonian PDE for a Lobatto IIIA–IIIB discretization in space to
give rise to explicit ODEs and an algorithm for constructing these ODEs.
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1. Introduction. A multi-Hamiltonian PDE in one time and one space dimen-
sion is a PDE which can be written as a first order system in the form

(1.1) Kzt + Lzx = ∇zS(z),

where z ∈ R
n, K and L are nonzero skew-symmetric matrices, and S(z) is a smooth

function [5].
Along solutions, z(t, x), to (1.1) the multisymplectic conservation law,

(1.2) ωt + κx = 0,

holds, where ω = 1
2Kdz∧ dz and κ = 1

2Ldz∧ dz are 2-forms and dz satisfies the first
variation of the PDE,

(1.3) Kdzt + Ldzx = DzzS(z)dz,

where DzzS(z) is a symmetric matrix.
One definition of a multisymplectic integrator is a numerical method that exactly

preserves a discrete analogue of (1.2) (a so-called discrete multisymplectic conser-
vation law) by applying a symplectic one-step method in space and time [11]. An
important fact here is that multisymplectic integrators do not conserve (1.2) exactly,
but rather different multisymplectic integrators preserve different discrete multisym-
plectic conservation laws, i.e., different discretizations of (1.2). This is in contrast
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to symplectic integrators for ODEs, which conserve symplecticity exactly. Some of
the consequences of preserving a discrete multisymplectic conservation law are the
following:

(i) exact preservation of some integrals, e.g., potential vorticity [14];
(ii) both energy and momentum are approximately locally conserved [5, 7, 18];
(iii) quasi-periodic orbits and chaotic regions are preserved (KAM theory) [22];
(iv) the ability to take comparatively large time-steps and retain long-time

stability [12].
In the past several authors [7, 13, 17, 18] have given discretizations of (1.1) which

they have shown to formally satisfy a discrete multisymplectic conservation law. What
these authors typically fail to consider is whether the resulting system of equations
forms a well-defined numerical integrator. Some problems that may occur in such
discretizations are [20]

(i) there may be no obvious choice of dependent variables;
(ii) the discrete equations may not be well defined locally (i.e., there may not

be one equation per dependent variable per cell);
(iii) the discrete equations may not be well defined globally (i.e., there may not

be one equation per dependent variable across all spatial grid points when boundary
conditions are imposed);

(iv) the discrete equations may not have a solution, or may not have a unique
solution or isolated solutions.

Difficulties due to these problems already occur for the most popular multisym-
plectic integrator, the Preissman box scheme. With periodic boundary conditions in
one space dimension, the discrete equations typically have only solutions with an odd
number of grid points, while with an even number of grid points they have no solu-
tion (nonlinear problems) or an infinite number of solutions (linear problems). With
higher order Runge–Kutta (RK) methods these problems are even worse [19].

Problems (iii) and (iv) will, in general, be avoided if a discretization method is
used which gives rise to explicit multisymplectic integrators. In order to construct
an explicit multisymplectic integrator, it is necessary for the discretization in each
dimension to be explicit and symplectic. For PDEs in one space and one time dimen-
sion, this condition means that a symplectic spatial discretization must give rise to
explicit ODEs in time (or vice versa, since space and time are treated on an equal
footing). This rules out discretization by symplectic RK methods. However, for some
partitioned Runge–Kutta (PRK) methods this is possible, e.g., the well-known 5-
point method obtained by applying leapfrog in space and time to the nonlinear wave
equation, utt − uxx = −V ′(u), gives the explicit multisymplectic integrator [7]

(1.4)
1

(Δt)2

⎡⎢⎣ 1

−2

1

⎤⎥⎦u− 1

(Δx)2
[

1 −2 1
]
u = −V ′(u),

where we have used the notation of centered stencils.
Thus, in this paper we will be concerned with applying a PRK discretization

in space to obtain explicit ODEs in time. In particular we will consider the Lobatto
IIIA–IIIB class of PRK discretization, which, under certain requirements on the PDE,
avoids problems (i) and (ii) and allows explicit ODEs to be obtained.

The remainder of this paper consists of four sections. In section 2 we will de-
scribe a PRK discretization with an arbitrary number of parts and show that such
a discretization in time and space gives rise to a natural discrete multisymplectic
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conservation law which is formally satisfied. In section 3 we give the conditions on
the coefficients of a PRK discretization to be of Lobatto IIIA–IIIB type and specify
our reasons for considering the Lobatto IIIA–IIIB class of PRK discretization. In
section 4 we give the conditions on a multi-Hamiltonian PDE such that the applica-
tion of a Lobatto IIIA–IIIB discretization in space allows one to construct explicit
ODEs and then present an algorithm for constructing these ODEs. We follow this
with several examples of PDEs that satisfy these conditions (such as the nonlinear
wave equation and the nonlinear Schrödinger equation) and some examples of PDEs
that do not. In section 5 we will discuss some properties of the ODEs formed through
our construction algorithm and give a shortcut for constructing these ODEs. We will
also discuss the discretization of these ODEs in time and their behavior with respect
to boundary conditions.

2. PRK discretization. When a differential equation,

(2.1) zt = f(z),

is discretized with a PRK discretization, the vector of dependent variables z ∈ R
n is

partitioned into several parts, z(γ) ∈ R
nγ with

∑
γ nγ = n. Typically, the number of

parts is two, but it is possible for the number of parts to be as high as n. A grid is
then introduced where we take the grid points (or nodes) (for convenience only) to
have equal spacing Δt, and we adopt the following notation: let cell i be the region in

the domain defined by t ∈ [iΔt, (i + 1)Δt), let zγ be the entry γ in z, let z
(γ)
i ∈ R

nγ

be the vector of variables in part γ at the node in cell i, let Z
(γ)
i,j ∈ R

nγ be the vector
of variables in part γ at stage j in cell i, and let the lack of a raised index (γ) indicate
the unpartitioned variable.

For an r-stage PRK discretization of (2.1) one obtains a set of equations coupling
the node values zi to the stage values Zi,j at r internal stages given by

(2.2)

Z
(γ)
i,j = z

(γ)
i + Δt

r∑
k=1

a
(γ)
jk ∂tZ

(γ)
i,k , j = 1, . . . , r,

z
(γ)
i+1 = z

(γ)
i + Δt

r∑
j=1

b
(γ)
j ∂tZ

(γ)
i,j ,

for each γ, where the new variables ∂tZi,j satisfy (2.1), i.e.,

(2.3) ∂tZi,j = f(Zi,j),

and the coefficients b
(γ)
j and a

(γ)
jk are chosen to satisfy certain order conditions.

The conditions for a two-part PRK discretization of a canonical Hamiltonian
ODE, with partitioning z(1) = q and z(2) = p, to be symplectic are [1]

(2.4) −a
(1)
kj b

(2)
k − b

(1)
j a

(2)
jk + b

(1)
j b

(2)
k = 0 for all j, k,

while the conditions for an RK discretization (i.e., a one-part PRK discretization with
z(1) = z, n1 = n) of the same ODE to be symplectic are [21]

(2.5) −a
(1)
kj b

(1)
k − b

(1)
j a

(1)
jk + b

(1)
j b

(1)
k = 0 for all j, k.

Generally, for a PRK discretization with coefficients satisfying (2.4), the coefficients
will not satisfy (2.5).
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When the PDE (1.1) is discretized in space with an r-stage PRK discretization,
the set of equations that one obtains is given by

(2.6)

Z
(γ)
i,j = z

(γ)
i + Δx

r∑
k=1

a
(γ)
jk ∂xZ

(γ)
i,k , j = 1, . . . , r,

z
(γ)
i+1 = z

(γ)
i + Δx

r∑
j=1

b
(γ)
j ∂xZ

(γ)
i,j ,

for each γ, where the new variables ∂xZi,j satisfy (1.1), i.e.,

(2.7) K∂tZi,j + L∂xZi,j = ∇zS(Zi,j).

Equations (2.6) and (2.7) form a differential-algebraic equation (DAE) for Zi,j and
zi. However, in this DAE there are no ODEs for the node values, and the constraints
apply only to LZi,j , not Zi,j . Furthermore, L may not have full rank, which may
prevent one from obtaining a system of explicit ODEs for the Zi,j .

Previous studies of the PDE (1.1) discretized in space and time with PRK meth-
ods have concluded that such discretizations satisfy a natural discrete approximation
of the multisymplectic conservation law (1.2) [13]. However, these studies use the
same partitioning of the variables for both the space and time discretizations, which
leads to a large number of cases to be considered, each with its own set of conditions to
be satisfied. This choice of partitioning in each dimension is important, as the condi-
tions for the discretized equations to satisfy the discrete multisymplectic conservation
law depend upon K and L.

For example, given a multi-Hamiltonian PDE and a two-part PRK discretization
in time with coefficients satisfying (2.4), if the PDE has no time derivatives of the
variables in the second part, then the discretization is in fact an RK discretization
with the same coefficients as the first of the PRK pair, which will not in general satisfy
(2.5).

To consider the most general case, we will now assume the finest possible parti-
tioning of the variables, namely n parts, where for each entry γ in z we have that
nγ = 1 and the part z(γ) consists simply of the variable zγ . We will use the notation
dZγ,n,m

i,j to represent the entry γ in z at stage j of cell i in space and stage m of cell
n in time, where a lack of either the index j or m indicates the node variable of cell i
in space or cell n in time, respectively. Also, let b

(γ)
j and a

(γ)
ij be the coefficients of the

spatial PRK discretization associated with the variable zγ , and let B
(γ)
m and A

(γ)
nm be

the coefficients of the temporal PRK discretization associated with the variable zγ .

The following theorem gives a much simpler set of conditions for PRK discretiza-
tions of (1.1) in space and time to satisfy a discrete multisymplectic conservation
law. Since it immediately applies to any other partitioning of the variables by simply

equating the b
(γ)
j and a

(γ)
ij coefficients of the appropriate parts in space or time, this

set of conditions encompasses all of the cases considered in previous studies.

Theorem 2.1. A multi-Hamiltonian PDE (1.1) discretized by a PRK method in
space and another PRK method in time has a discrete multisymplectic conservation
law, given by

(2.8) Δx
∑
j

bj(ω
n+1
i,j − ωn

i,j) + Δt
∑
m

Bm(κn,m
i+1 − κn,m

i ) = 0,
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where ωn
i,j = 1

2

∑
β,γ KβγdZγ,n

i,j ∧ dZβ,n
i,j and κn,m

i = 1
2

∑
β,γ LβγdZγ,n,m

i ∧ dZβ,n,m
i

when the following conditions hold:

(2.9)
b
(γ)
j = bj ,

−a
(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k = 0

for all j, k and pairs (β, γ) such that Lβγ �= 0 and

(2.10)
B(γ)

m = Bm,

−A(γ)
nmB(β)

n −B(γ)
m A(β)

mn + B(γ)
m B(β)

n = 0

for all m,n and pairs (β, γ) such that Kβγ �= 0.
Proof.

(2.11)

(
κn,m
i+1 − κn,m

i

)
=

1

2

∑
β,γ

(
LβγdZγ,n,m

i+1 ∧ dZβ,n,m
i+1 − LβγdZγ,n,m

i ∧ dZβ,n,m
i

)

=
1

2

∑
β,γ

Lβγ

((
dZγ,n,m

i + Δx
∑
j

b
(γ)
j ∂xdZγ,n,m

i,j

)
∧
(

dZβ,n,m
i

+ Δx
∑
k

b
(β)
k ∂xdZβ,n,m

i,k

)
− dZγ,n,m

i ∧ dZβ,n,m
i

)

=
1

2

∑
β,γ

Lβγ

(
Δx

(
dZγ,n,m

i ∧
∑
k

b
(β)
k ∂xdZβ,n,m

i,k +
∑
j

b
(γ)
j ∂xdZγ,n,m

i,j ∧ dZβ,n,m
i

)

+ (Δx)2
∑
j,k

b
(γ)
j b

(β)
k ∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k

)

=
1

2

∑
β,γ

Lβγ

(
Δx
∑
k

(
dZγ,n,m

i,k − Δx
∑
j

a
(γ)
kj ∂xdZγ,n,m

i,j

)
∧ b

(β)
k ∂xdZβ,n,m

i,k

+ Δx
∑
j

b
(γ)
j ∂xdZγ,n,m

i,j ∧
(

dZβ,n,m
i,j − Δx

∑
k

a
(β)
jk ∂xdZβ,n,m

i,k

)

+ (Δx)2
∑
j,k

b
(γ)
j b

(β)
k ∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k

)

=
1

2

∑
β,γ

Lβγ

(
Δx

(∑
k

b
(β)
k dZγ,n,m

i,k ∧ ∂xdZβ,n,m
i,k +

∑
j

b
(γ)
j ∂xdZγ,n,m

i,j ∧ dZβ,n,m
i,j

)
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+ (Δx)2
∑
j,k

(
− a

(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k

)
∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k

)

= Δx
∑
β,γ,j

b
(γ)
j Lβγ∂xdZγ,n,m

i,j ∧ dZβ,n,m
i,j

+
1

2
(Δx)2

∑
β,γ

Lβγ

∑
j,k

(
− a

(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k

)
∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k .

When Lβγ is nonzero, the (Δx)2 term above is zero if

(2.12) −a
(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k = 0 for all j, k.

Similarly,

(2.13)
(
ωn+1
i,j − ωn

i,j

)
= Δt

∑
β,γ,m

B(γ)
m Kβγ∂tdZ

γ,n,m
i,j ∧ dZβ,n,m

i,j

+
1

2
(Δt)2

∑
β,γ

Kβγ

∑
m,l

(
−A

(γ)
lmB

(β)
l −B(γ)

m A
(β)
ml + B(γ)

m B
(β)
l

)
∂tdZ

γ,n,m
i,j ∧ ∂tdZ

β,n,m
i,k

and when Kβγ is nonzero, the (Δt)2 term is zero if

(2.14) −A(γ)
nmB(β)

n −B(γ)
m A(β)

mn + B(γ)
m B(β)

n = 0 for all m,n.

Now, writing (1.3) in components and taking its wedge product with dzβ gives

(2.15)
∑
γ

(
Kβγ∂tdz

γ ∧ dzβ + Lβγ∂xdzγ ∧ dzβ
)

= 0 for all β

since DzzS(z) is symmetric. Thus, in general∑
γ,j,m

b
(γ)
j B(γ)

m Lβγ

(
∂xdZγ,n,m

i,j ∧ dZβ,n,m
i,j

)
(2.16)

= −
∑
γ,j,m

b
(γ)
j B(γ)

m Kβγ

(
∂tdZ

γ,n,m
i,j ∧ dZβ,n,m

i,j

)
when b

(γ)
j = bj and B

(γ)
m = Bm for all j, m, and γ.

Therefore, if (2.9) and (2.10) hold, then we can see from (2.11) and (2.13) that
the discrete multisymplectic conservation law (2.8) holds.

The discrete multisymplectic conservation law (i.e., (2.8)) is an approximation to
the integral

(2.17)

∫ (i+1)Δx

iΔx

(ω(x, (n + 1)Δt) − ω(x, nΔt)) dx

+

∫ (n+1)Δt

nΔt

(κ((i + 1)Δx, t) − κ(iΔx, t)) dt = 0,

which is the integral of (1.2) over the cell with one corner at (iΔx, nΔt).
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Now, suppose we have a two-part PRK discretization in space where the coeffi-
cients satisfy (2.4) but not (2.5); then for (2.12) to be satisfied the partitioning of the
variables in space must be chosen such that κ has terms only of the form dz(1)∧dz(2).
Similarly, given a two-part PRK discretization in time where the coefficients satisfy
(2.4) but not (2.5), for (2.14) to be satisfied the partitioning of the variables in time
must be chosen such that ω has only terms of the form dz(1) ∧ dz(2).

Theorem 2.1 shows that if the partitioning in space and time is chosen appropri-
ately, then a PRK discretization in space and time with coefficients satisfying (2.4)
will result in an integrator that formally satisfies a multisymplectic conservation law
given by (2.8). However, this does not guarantee that the integrator is well defined.
The approach we take to obtaining a well-defined multisymplectic integrator is to
apply an explicit symplectic PRK discretization in each dimension.

We define an explicit discretization in space as a discretization for which the
time derivatives of the dependent variables may be written explicitly in terms of
the dependent variables. Their derivation may involve solving linear systems, but
these must be independent of the PDE. An explicit local discretization is an explicit
discretization for which these ODEs depend only on nearby values of the dependent
variables.

In section 4 we will give the conditions on a multi-Hamiltonian PDE such that one
can obtain an explicit local symplectic PRK discretization in space based on Lobatto
IIIA–IIIB, and we will give an algorithm for obtaining the explicit ODEs in time.

3. Lobatto IIIA–IIIB. The particular class of PRK discretization that we
consider in this paper is a two-part discretization known as Lobatto IIIA–IIIB. For

these methods, the coefficients a
(1)
ij , a

(2)
ij and b

(1)
j = b

(2)
j = bj are determined by [8]

(3.1)

B(r) :

r∑
i=1

bic
k−1
i =

1

k
for k ≤ r,

C(r) :

r∑
j=1

a
(1)
ij ck−1

j =
1

k
cki for i = 1, . . . , r and k ≤ r,

D(r) :

r∑
i=1

bic
k−1
i a

(2)
ij =

1

k
bj(1 − ckj ) for j = 1, . . . , r and k ≤ r,

where the ci are zeros of the Lobatto quadrature polynomial

(3.2)
dr−2

dxr−2

(
xr−1(x− 1)r−1

)
.

While the Lobatto IIIA and Lobatto IIIB classes of RK methods have each been
known since the mid 1960s, their coefficients do not satisfy (2.5), and it was discovered
only relatively recently that the Lobatto IIIA–IIIB class of PRK methods formed by
combining Lobatto IIIA and Lobatto IIIB has coefficients that satisfy (2.4) [16, 23].
Thus for a discretization of (1.1), if the partitioning of the variables in each of the
space and time dimensions can be chosen such that the 2-form associated with each
dimension has terms only of the form dz(1) ∧ dz(2), then the resulting integrator will
satisfy a discrete multisymplectic conservation law.
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The reason we consider the Lobatto IIIA–IIIB class of PRK discretizations is
because their coefficients are related in the following way:

a
(1)
1j = 0, a

(1)
rj = bj for all j,(3.3)

a
(2)
ir = 0, a

(2)
i1 = b1 for all i,(3.4)

and the (r − 2) × (r − 2) matrix C with entries

(3.5) Ci−1,j−1 =
∑
k,l

a
(1)
ik (bl − δkl)a

(2)
lj for 2 ≤ i, j ≤ r − 1

is invertible.

The relations given in (3.3) and (3.4) are a direct consequence of (3.1) and (3.2)
and give us three properties which will be required in our algorithm for constructing
explicit ODEs in the next section. First, from (3.3) we can see that, for γ = 1, a node
value is equal to the first stage value associated with that node and also equal to the
last stage value associated with the previous node. Second, (3.4) gives us that both∑

j bja
(2)
jr and b1 −

∑
j bja

(2)
j1 are zero. Lastly, (3.3) and (3.4) together give

(3.6)
∑
k,l

a
(1)
ik (bl − δkl)a

(2)
lj = 0 if either i ∈ {1, r} or j ∈ {1, r},

where δkl is the Kronecker delta. The invertibility of C can then be shown via
the Frobenius inequality and will be used directly in the construction algorithm.

The coefficients for Lobatto IIIA–IIIB methods can be written succinctly as pairs
of Butcher tableaux; we give below the coefficients for r = 2, 3, and 4:

(3.7) r = 2 : IIIA:

0 0 0

1 1
2

1
2

1
2

1
2

, IIIB:

0 1
2 0

1 1
2 0

1
2

1
2

.

Second order Lobatto IIIA–IIIB is often referred to as generalized leapfrog:

r = 3 : IIIA:

0 0 0 0

1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

, IIIB:

0 1
6 − 1

6 0

1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

,(3.8)
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r = 4 : IIIA:

0 0 0 0 0

5−
√

5
10

11+
√

5
120

25−
√

5
120

25−13
√

5
120

−1+
√

5
120

5+
√

5
10

11−
√

5
120

25+13
√

5
120

25+
√

5
120

−1−
√

5
120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

,

IIIB:

0 1
12

−1−
√

5
24

−1+
√

5
24 0

5−
√

5
10

1
12

25+
√

5
120

25−13
√

5
120 0

5+
√

5
10

1
12

25+13
√

5
120

25−
√

5
120 0

1 1
12

11−
√

5
24

11+
√

5
24 0

1
12

5
12

5
12

1
12

.

(3.9)

4. Explicit ODEs. In the one dimensional situation (i.e., time integration), the
dependent variables are the zi; (2.2) determines the stage variables Zi,j and defines a
map from zi to zi+1. In contrast, for situations where the dimension is greater than
one (e.g., for PDEs of the form of (1.1)), if one applies a PRK discretization in space,
then the dependent variables will typically be the stage variables Zi,j , while the node
variables zi and the new variables ∂xZi,j will be eliminated using the PDE to yield
a set of ODEs in time for the Zi,j . As we shall see in the following theorem, this
elimination depends upon the structure not only of K and L, but also of S(z).

Theorem 4.1. Consider a multi-Hamiltonian PDE (1.1), where the K and L
matrices have the following structure:

(4.1) K =

⎡⎢⎣ −I 1
2 (d1+d2)

I 1
2 (d1+d2)

0d1

⎤⎥⎦ , L =

⎡⎢⎣ Id1

0d2

−Id1

⎤⎥⎦ ,
where d1 = n − rank(K), d2 = n − 2d1 ≤ d1, Id is the d × d identity matrix, and 0d

is the d× d zero matrix.
Let the variables z be partitioned into two parts z(1) ∈ R

d1+d2 and z(2) ∈ R
d1 ,

where we denote the first d1 components of z(1) by q, the last d2 components of z(1)

by v, and the components of z(2) by p such that the PDE may be written as

(4.2)

⎡⎢⎣ −I 1
2 (d1+d2)

I 1
2 (d1+d2)

0d1

⎤⎥⎦
⎡⎢⎣ q

v

p

⎤⎥⎦
t

+

⎡⎢⎣ Id1

0d2

−Id1

⎤⎥⎦
⎡⎢⎣ q

v

p

⎤⎥⎦
x

=

⎡⎢⎣ ∇qS(z)

∇vS(z)

∇pS(z)

⎤⎥⎦ .
If the function S(z) can be written in the form

(4.3) S(z) = T (p) + V (q) + V̂ (v),
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where T (p) = 1
2p

tβp and V̂ (v) = 1
2v

Tαv such that |β| �= 0 and |α| �= 0, then applying
an r-stage Lobatto IIIA–IIIB PRK discretization in space to the PDE leads to a set
of explicit local ODEs in time in the stage variables associated with q.

Proof. A general outline of the proof of this theorem is as follows. We first make
use of the form of S(z) to rewrite (4.2) by eliminating the v variables. The r-stage
Lobatto IIIA–IIIB discretization is then applied to the resulting PDE. Next, we make
use of the requirements of the theorem in order to eliminate the node variables and the
stage variables associated with p and to rearrange the resulting equations to obtain
explicit local ODEs in time in the stage variables associated with q. This elimination
and rearrangement is carried out by way of a five-step construction algorithm.

Due to the form of S(z), the central d2 rows of (4.2) allow us to write entry i in
v as

(4.4) vi =

d2∑
j=1

(α−1)i,j∂tqj+ 1
2 (d1−d2)

and hence

(4.5) ∂tvi =

d2∑
j=1

(α−1)i,j∂
2
t qj+ 1

2 (d1−d2).

Substituting (4.5) into (4.2), we can eliminate the v variables in favor of higher order
derivatives in time of the q variables. This lets us write (4.2) as

(4.6) Kzt + Lzx − Eztt = ∇zS(z),

where z, K, L, E , and S(z) are the new vectors, matrices, and functions given below:

(4.7)

z =

[
q

p

]
, K =

⎡⎢⎢⎢⎢⎣
−I 1

2 (d1−d2)

0d2

I 1
2 (d1−d2)

0d1

⎤⎥⎥⎥⎥⎦ ,

L =

[
Id1

−Id1

]
, E =

⎡⎢⎢⎢⎢⎣
0 1

2 (d1−d2)

α−1

0 1
2 (d1−d2)

0d1

⎤⎥⎥⎥⎥⎦ ,

and S(z) = T (p) + V (q).

Note that if d2 = 0, then (4.2) and (4.6) are identical; i.e., V̂ (v) ≡ 0 and E is a
d1 × d1 matrix of zeros.

We shall now give a five-step algorithm for constructing explicit local ODEs in
time from an r-stage Lobatto IIIA–IIIB PRK discretization of (4.6). However, be-
fore we begin, it is necessary to introduce the following notation which will be used
throughout the remainder of this text:

(i) zηi is the node variable in cell i for the entry η in z,
(ii) Zη

i,j is the stage variable at stage j in cell i for the entry η in z,
(iii) Zη

i is the vector of stage variables in cell i for the entry η in z,
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(iv) Zi is the tensor of stage variables for all values of η in cell i,
(v) ∂n

t Z
η
i,j is a variable representing the first (n = 1) and second (n = 2) time

derivatives of Zη
i,j ,

(vi) ∂zηS(Zi) is the vector of stage values at cell i obtained by taking the deriva-
tive of the function S(z) with respect to the entry η in z,

(vii) A(1) is the r × r matrix of aij values for Lobatto IIIA,
(viii) A(2) is the r × r matrix of aij values for Lobatto IIIB,
(ix) b is the common vector of length r of bj values for Lobatto IIIA and IIIB,
(x) 1 is a vector of length r with all entries equal to 1.

Now, (4.6) discretized in space by an r-stage Lobatto IIIA–IIIB PRK discretiza-
tion results in the following system of implicit ODEs:

Qη
i = qηi 1 + ΔxA(1)(−∂pηT (Pi)),(4.8)

qηi+1 = qηi + ΔxbT (−∂pηT (Pi)),(4.9)

Pη
i = pηi 1 + ΔxA(2)(∂qηV (Qi) + gηi ),(4.10)

pηi+1 = pηi + ΔxbT (∂qηV (Qi) + gηi ),(4.11)

for 1 ≤ η ≤ d1, where
(4.12)

gηi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tQ

η+ 1
2 (d1+d2)

i , 1 ≤ η ≤ 1
2 (d1 − d2),

−∂tQ
η− 1

2 (d1+d2)
i , 1

2 (d1 + d2) < η ≤ d1,∑d2

θ=1(α
−1)η− 1

2 (d1−d2),θ∂
2
t Q

θ+ 1
2 (d1−d2)

i , 1
2 (d1 − d2) < η ≤ 1

2 (d1 + d2).

It should be noted that for the simpler case where d2 = 0, the third option for gηi
vanishes.

CONSTRUCTION ALGORITHM.

Step 1. A special property of the Lobatto IIIA discretization is that the first row
of the coefficient matrix A(1) is zero and the last row of A(1) is bT .

Due to this property, we can see that the first row of (4.8) gives qηi = Qη
i,1, and

comparing the last row of (4.8) with (4.9) gives qηi+1 = Qη
i,r. Furthermore, from

these two identities we can conclude that Qη
i,r = Qη

i+1,1, ∂tQ
η
i,r = ∂tQ

η
i+1,1, and

∂2
tQ

η
i,r = ∂2

tQ
η
i+1,1.

Step 2. Since T (p) = 1
2p

Tβp and |β| �= 0 we have that Pi = β−1∇pT (Pi). Also
a property of all RK and PRK discretizations is that bT1 = 1. Therefore we can
substitute Pη

i from (4.10) into (4.9) and rearrange to get

(4.13) pηi = − 1

Δx

d1∑
ζ=1

(
(β−1)η,ζ(Q

ζ
i+1,1 −Qζ

i,1)
)
− ΔxbTA(2)(∂qηV (Qi) + gηi ).

Note that this rearrangement is possible since β operates on the index η, while b
and A(2) operate on the index j as given in the notation scheme.
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Step 3. Substituting Pη
i from (4.10) into (4.8) and then substituting pηi from

(4.13) into the resulting equation gives

(4.14)

Qη
i = Qη

i,11 − ΔxA(1)

⎛⎝ d1∑
ζ=1

βη,ζ(P
ζ
i )

⎞⎠
= Qη

i,11 − ΔxA(1)

⎛⎝ d1∑
ζ=1

βη,ζ(p
ζ
i 1 + ΔxA(2)(∂qζV (Qi) + gζi ))

⎞⎠
= Qη

i,11 − ΔxA(1)

(
d1∑
ζ=1

βη,ζ

([
− 1

Δx

d1∑
ξ=1

(
(β−1)ζ,ξ(Q

ξ
i,r −Qξ

i,1)
)

− ΔxbTA(2)(∂qζV (Qi) + gζi )

]
1 + ΔxA(2)(∂qζV (Qi) + gζi )

))
.

Rearranging and applying β−1 gives

(4.15)

1

(Δx)2

d1∑
ζ=1

(β−1)η,ζ

[
Qζ

i −Qζ
i,11 − A(1)(Qζ

i,r −Qζ
i,1)1
]

= A(1)
[
(bTA(2)(∂qηV (Qi) + gηi ))1 − A(2)(∂qηV (Qi) + gηi )

]
= A(1)(1bT − I)A(2)(∂qηV (Qi) + gηi ).

Now, the first and last rows of the left-hand side of (4.15) are zero, as are the
first and last rows and columns of A(1)(1bT − I)A(2). Therefore, we denote rows 2

to r − 1 of [Qζ
i −Qζ

i,11 − A(1)(Qζ
i,r −Qζ

i,1)1] by dζ
i , the block of A(1)(1bT − I)A(2)

from (2, 2) to (r − 1, r − 1) by C, and rows 2 to r − 1 of ∂qηV (Qi) + gηi by eηi .
Then, noting that C has full rank due to (3.5), we can write

(4.16)
1

(Δx)2

d1∑
ζ=1

(β−1)η,ζC
−1dζ

i = eηi .

Recalling the definition of gηi , (4.16) immediately allows us to write down explicit
formulas for ∂tQ

η
i,k in terms of Qi for 1 < k < r and 1 ≤ η ≤ 1

2 (d1−d2) or 1
2 (d1+d2) <

η ≤ d1 and for ∂2
tQ

η
i,k in terms of Qi for 1 < k < r and 1

2 (d1 − d2) < η ≤ 1
2 (d1 + d2).

Step 4. Substituting pηi from (4.13) into (4.11) for both pηi and pηi+1 gives

(4.17) − 1

(Δx)2

d1∑
ζ=1

(β−1)η,ζ(Q
ζ
i+2,1 − 2Qζ

i+1,1 + Qζ
i,1)

= bTA(2)(∂qηV (Qi+1) + gηi+1) + (bT − bTA(2))(∂qηV (Qi) + gηi )

for each η.
Of importance here is that (4.17) does not involve the variables ∂tQ

η
i+1,r or

∂2
tQ

η
i+1,r since the last entry of bTA(2) is zero. Neither does it involve the variables

∂tQ
η
i,1 or ∂2

tQ
η
i,1 since the first entry of bT − bTA(2) is also zero.
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Step 5. Substituting the formulas for ∂tQ
η
i,k and ∂2

tQ
η
i,k found in Step 3 into

(4.17) and recalling that ∂tQ
η
i,r = ∂tQ

η
i+1,1 and ∂2

tQ
η
i,r = ∂2

tQ
η
i+1,1, we can obtain

explicit formulas for ∂tQ
η
i+1,1 in terms of Qi and Qi+1 for 1 ≤ η ≤ 1

2 (d1 − d2) and
1
2 (d1 + d2) < η ≤ d1 and for ∂2

tQ
η
i+1,1 in terms of Qi and Qi+1 for 1

2 (d1 − d2) < η ≤
1
2 (d1 + d2).

Thus, for each cell i in our grid, we have a system of explicit ODEs for either
the first or second time derivatives of the stage variables Qi in terms of local values
of Qi.

While the conditions on K, L, and S(z) in the above theorem may at first ap-
pear restrictive, they allow several important equations such as the nonlinear wave
and nonlinear Schrödinger equations. A notable exception is the Korteweg–de Vries
equation for which S(z) is not separable. It is also worth noting that the conditions
on K, L, and S(z) are the same as those required for the continuous system to be
written as a system of PDEs in the variables q and are similar to those required for
a separable Hamiltonian system to be written as a system of second order ODEs.

The structure of K is known as the “Darboux normal form” of K and a change of
coordinates will allow any skew-symmetric matrix to be written this way. If putting
K in Darboux normal form gives L the structure

(4.18) L =

⎡⎢⎣ Λ

0d2

−ΛT

⎤⎥⎦
for some d1 × d1 matrix Λ with |Λ| �= 0, then the following change of coordinates

in the p variables can put L in the form given in (4.1). Let p̂ = Λp and T̂ (p̂) =

T (Λ−1p̂) = T (p); then ∇p̂S(z) = ∇p̂T̂ (p̂) = Λ∇pT (p) = Λβp = ΛβΛ−1p̂ and S(z)
still has the desired structure S(z) = V (q) + 1

2 p̂
T (ΛβΛ−1)p̂.

The upper left (d1 +d2)× (d1 +d2) block of L being all zeros is fulfilled for PDEs
which, when written as a first order system with K in Darboux normal form, have
no equations involving both a time and space derivative of the same variable; i.e.,
zηt + zηx = f(z) does not appear for any η.

4.1. Examples. Here we give several examples of common multi-Hamiltonian
PDEs. For the PDEs that satisfy the requirements of Theorem 4.1 we give the ODEs
that one obtains by applying the construction algorithm to those PDEs. For PDEs
that do not satisfy the requirements of Theorem 4.1 we show why they fail and where
the construction algorithm breaks down. We also give a PDE constructed so as to
require the full use of Theorem 4.1.

4.1.1. Nonlinear wave equation. Our first example is the nonlinear wave
equation,

(4.19) utt = uxx − V ′(u),

which can be written as a multi-Hamiltonian PDE in the form of (4.2) with [5]

(4.20) z =

⎡⎢⎣ u

v

w

⎤⎥⎦ , K =

⎡⎢⎣ 0 −1 0

1 0 0

0 0 0

⎤⎥⎦ , L =

⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦
and S(z) = V (u) + 1

2v
2 − 1

2w
2.
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Here, d1 = d2 = 1 with z(1) = {u, v} and z(2) = {w}. We also have α = −β = 1;
thus we can see that K, L, and S(z) satisfy the requirements of Theorem 4.1. Upon
eliminating the variable v, we obtain the PDE (4.6) with

(4.21) z =

[
u

w

]
, K =

[
0 0

0 0

]
, L =

[
0 1

−1 0

]
, E =

[
1 0

0 0

]
and S = V (u) − 1

2w
2.

Applying the construction algorithm for r = 2 gives the following pair of ODEs
for each cell i:

(4.22)
∂2
tUi,1 =

1

(Δx)2
(Ui−1,1 − 2Ui,1 + Ui+1,1) − V ′(Ui,1),

∂2
tUi,2 = ∂2

tUi+1,1.

Recalling from Step 1 that qi = Qi,1 and noting that the last ODE is simply the first
ODE of the next cell, it is convenient to drop the second ODE and rewrite the first
ODE in terms of the node variable ui:

(4.23) ∂2
t ui =

1

(Δx)2
(ui−1 − 2ui + ui+1) − V ′(ui).

Applying the construction algorithm for r = 3 gives the following triplet of ODEs
for each cell i:

(4.24)

∂2
tUi,1 =

1

(Δx)2
(−Ui−1,1 + 8Ui−1,2 − 14Ui,1 + 8Ui,2 − Ui+1,1) − V ′(Ui,1),

∂2
tUi,2 =

1

(Δx)2
(4Ui,1 − 8Ui,2 + 4Ui+1,1) − V ′(Ui,2),

∂2
tUi,3 = ∂2

tUi+1,1,

which cannot be written in terms of the node variables alone.

4.1.2. NLS equation. Our second example is the famous cubic-potential non-
linear Schrödinger (NLS) equation,

(4.25) iψt + ψxx + 2|ψ|2ψ = 0,

where ψ ∈ C. Taking ψ = p + iq and separating the real and imaginary components
of NLS allows the PDE to be written in the form of (4.2) with [15]

(4.26) z =

⎡⎢⎢⎢⎢⎣
p

q

v

w

⎤⎥⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎣
0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎣
0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎤⎥⎥⎥⎦
and S = − 1

2 (p2 + q2)2 − 1
2 (v2 + w2).

Here we have d1 = 2 and d2 = 0 with z(1) = {p, q} and z(2) = {v, w}. S(z) can
be written as (4.3) with V (q) = − 1

2 (p2 + q2) and T (p) = 1
2p

Tβp, where

(4.27) β =

[
−1 0

0 −1

]
and p =

[
v

w

]
,

and thus the NLS equation also satisfies the requirements of Theorem 4.1.
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Applying the construction algorithm for an r-stage discretization gives r ODEs
for each element of z(1) at cell i. As with the nonlinear wave equation, if we use the
2-stage discretization, then for each element of z(1) at cell i we can drop the ODE for
the second stage variable and write the ODE for the first stage variable in terms of
the node variables. The resulting ODEs are

(4.28)

∂tpi = − 1

(Δx)2
(qi−1 − 2qi + qi+1) − 2(p2

i + q2
i )qi,

∂tqi =
1

(Δx)2
(pi−1 − 2pi + pi+1) + 2(p2

i + q2
i )pi.

These are precisely the ODEs one obtains by applying second order finite differences in
space to (4.25). The same statement applies for other PDEs that satisfy the conditions
of Theorem 4.1; thus we note that 2-stage Lobatto IIIA–IIIB discretization in space
is equivalent to second order finite differences in space up to second order differences
when applied to such a PDE.

For r = 3 we obtain a triplet of ODEs for each element of z(1) at cell i:

(4.29)

∂tPi,1 = − 1

(Δx)2
(−Qi−1,1 + 8Qi−1,2 − 14Qi,1 + 8Qi,2 −Qi+1,1)

− 2(P 2
i,1 + Q2

i,1)Qi,1,

∂tPi,2 = − 1

(Δx)2
(4Qi,1 − 8Qi,2 + 4Qi+1,1) − 2(P 2

i,2 + Q2
i,2)Qi,2,

∂tPi,3 = ∂tPi+1,1,

∂tQi,1 =
1

(Δx)2
(−Pi−1,1 + 8Pi−1,2 − 14Pi,1 + 8Pi,2 − Pi+1,1)

+ 2(P 2
i,1 + Q2

i,1)Pi,1,

∂tQi,2 =
1

(Δx)2
(4Pi,1 − 8Pi,2 + 4Pi+1,1) + 2(P 2

i,2 + Q2
i,2)Pi,2,

∂tQi,3 = ∂tQi+1,1.

4.1.3. Boussinesq equation. Our third example is the “good” Boussinesq
equation,

(4.30) ptt = (εpxx + V ′(p))xx,

which, when written as a multi-Hamiltonian PDE, shares the same z, z(1), z(2), K,
and L as the NLS equation above [9]. The only difference is the function S(z) which
is given by S(z) = −V (p)+ 1

2 (w2 − 1
εv

2). (The class of Boussinesq equations includes
a broad range of PDEs, some of which satisfy the conditions of Theorem 4.1.)

As before, the requirements of Theorem 4.1 are satisfied, and applying the con-
struction algorithm gives r ODEs for each element of z(1) at cell i. For r = 2, we
once again drop the ODEs for the second stage variables and write the first ODEs in
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terms of the node variables as

(4.31)

∂tpi =
1

(Δx)2
(qi−1 − 2qi + qi+1),

∂tqi =
ε

(Δx)2
(pi−1 − 2pi + pi+1) + V ′(p).

For r = 3 we get

(4.32)

∂tPi,1 =
1

(Δx)2
(−Qi−1,1 + 8Qi−1,2 − 14Qi,1 + 8Qi,2 −Qi+1,1),

∂tPi,2 =
1

(Δx)2
(4Qi,1 − 8Qi,2 + 4Qi+1,1),

∂tPi,3 = ∂tPi+1,1,

∂tQi,1 =
ε

(Δx)2
(−Pi−1,1 + 8Pi−1,2 − 14Pi,1 + 8Pi,2 − Pi+1,1) + V ′(Pi,1),

∂tQi,2 =
ε

(Δx)2
(4Pi,1 − 8Pi,2 + 4Pi+1,1) + V ′(Pi,2),

∂tQi,3 = ∂tQi+1,1.

4.1.4. Korteweg–de Vries (KdV) equation. Our fourth example is the KdV
equation,

(4.33) ut = V ′(u)x + νuxxx,

which can be written in the form of (4.2) with [6]

(4.34) z =

⎡⎢⎢⎢⎣
u

φ

v

w

⎤⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎣
0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎣
0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎤⎥⎥⎥⎦
and with S(z) = − 1

2uw−V (u)− 1
2ν v

2. Here, d1 = 2, d2 = 0 and z is partitioned into

z(1) = {u, φ} and z(2) = {v, w}.
While the K and L matrices have the required structure for Theorem 4.1, the

function S(z) does not. Specifically, the −uw term in S(z) prevents us from writing
T (p) = 1

2p
Tβp, and so step 2 of the construction algorithm cannot be carried out.

For example, discretizing the KdV equation with two-stage Lobatto IIIA–IIIB
gives

(4.35)

vi+ 1
2

= vi− 1
2

+ Δx(∂tφi − V ′(ui) −
1

4
(wi+ 1

2
+ wi− 1

2
)),

wi+ 1
2

= wi− 1
2
− Δx∂tui,

−ui+1 = −ui − Δx
1

ν
vi+ 1

2
,

−φi+1 = −φi − Δx
1

4
(ui + ui+1),
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where ui = Ui,1, ui+1 = Ui,2, φi = Φi,1, φi+1 = Φi,2, vi+ 1
2

= Vi,1 = Vi,2, and
wi+ 1

2
= Wi,1 = Wi,2.

Introducing the operators D and M , where Dui = 1
Δx (ui+1 − ui) and Mui =

1
2 (ui+1 + ui), allows us to write this system as

(4.36)

Dvi− 1
2

= ∂tφi − V ′(ui) −
1

2
Mwi− 1

2
,

Dwi− 1
2

= −∂tui,

−Dui = −1

ν
vi+ 1

2
,

−Dφi = −1

2
Mui.

Eliminating all the variables other than the original variable u gives the implicit ODE

(4.37) M∂tui = DV ′(ui) + νD3ui−1.

In general, M is not invertible; thus further conditions are required (e.g., periodic
boundary conditions with an odd number of grid points) to form a well-defined inte-
grator from this implicit ODE.

This is none other than the narrow box scheme, introduced in [2] and derived as
a finite volume scheme (and shown to be more accurate than the box scheme) in [3].
Thus, we have shown that the narrow box scheme is multisymplectic.

4.1.5. Benjamin–Bona–Mahony (BBM) equation. Our fifth example is the
BBM equation [4],

(4.38) ut − αuxxt = V ′(u)x.

This equation can be written in the form of (1.1) [19] with z = [u, θ, φ, w, ρ]T ,

(4.39) K =

⎡⎢⎢⎢⎢⎢⎢⎣
0 α

2 − 1
2 0 0

−α
2 0 0 0 0

1
2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 α

2

0 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

−α
2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
and S(z) = uw − V (u) − α

2 θρ.
Putting K into its Darboux normal form results in an L of the form

(4.40) L =

[
03 Λ

−ΛT 02

]
,

where Λ is a 3 × 2 matrix. The matrix L does not have the form of (4.18), and so it
cannot be written in the form of (4.1) by applying a change of variables. Thus, the
BBM equation does not satisfy the requirements of Theorem 4.1.

However, partitioning z into z(1) = {u, θ, φ} and z(2) = {w, ρ}, then discretizing
the BBM equation with two-stage Lobatto IIIA–IIIB using the D and M notation
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gives

(4.41)

α

2
Dρi− 1

2
= Mwi− 1

2
− V ′(ui) −

α

2
∂tθi +

1

2
∂tφi,

0 = −α

2
Mρi− 1

2
+

α

2
∂tui,

−Dwi− 1
2

= −1

2
∂tui,

Dφi = Mui,

−α

2
Dui = −α

2
Mθi.

Eliminating θ, φ, w, and ρ gives the implicit ODE

(4.42) (M2 − αD2)∂tui = MDV ′(ui).

As with the KdV equation, the operator on the left-hand side cannot be locally in-
verted, although it is at least typically invertible.

4.1.6. Padé–II equation. Our sixth example is the equation

(4.43) ut − αuxxt = V ′(u)x + νuxxx,

which contains a mixture of the third order derivatives found in the KdV and BBM
equations. This equation is referred to as the Padé–II equation in [10] when ν = 9

10 ,
α = 19

10 , and V (u) = − 1
2u

2 − 1
6u

3. It can be written in the form of (1.1) [19] with
z = [u, θ, φ, w, ρ, v]T ,

(4.44) K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α
2 − 1

2 0 0 0

−α
2 0 0 0 0 0

1
2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 α
2 ν

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 1 0 0 0

−α
2 0 0 0 0 0

−ν 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and S(z) = uw − V (u) − ν

2v
2 − α

2 θρ.

Putting K into its Darboux normal form results in an L of the form

(4.45) L =

[
03 Λ

−ΛT 03

]
,

where Λ is a 3 × 3 matrix with rank(Λ) = 2. Thus, we cannot write L in the form of
(4.1), and so the Padé–II equation does not satisfy the requirements of Theorem 4.1.

However, partitioning z into z(1) = {u, θ, φ} and z(2) = {w, ρ, v}, then discretizing
the Padé–II equation with two-stage Lobatto IIIA–IIIB using the D and M notation
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gives

(4.46)

α

2
Dρi− 1

2
+ νDvi− 1

2
= Mwi− 1

2
− V ′(ui) −

α

2
∂tθi +

1

2
∂tφi,

0 = −α

2
Mρi− 1

2
+

α

2
∂tui,

−Dwi− 1
2

= −1

2
∂tui,

Dφi = Mui,

−α

2
Dui = −α

2
Mθi,

−νDui = −νvi− 1
2
.

Eliminating θ, φ, w, ρ, and v gives the implicit ODE

(4.47) (M2 − αD2)∂tui = MDV ′(ui) + νMD3ui−1.

As in the previous two examples, the operator on the left-hand side of (4.47) cannot
be locally inverted.

4.1.7. A made-up example. Our last example is contrived to satisfy the re-
quirements of Theorem 4.1 and demonstrates the case when d2 �= d1 and d2 �=
0. We have chosen d1 = 3, d2 = 1, and a multi-Hamiltonian PDE (1.1) with
z = [q1, q2, q3, v, p1, p2, p3]T ,

(4.48) K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0

0 0 0 −1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and S(z) = V (q) + 1

2p
Tβp + α

2 v
2, where α is a constant and

(4.49) β =

⎡⎢⎣ 1 1 − 1
2

1 1 0

− 1
2 0 1

⎤⎥⎦ .
This corresponds to the PDE

(4.50)

∂tq
1 = −2q1

xx + 2q2
xx + ∂q3V (q),

1

α
∂2
t q

2 = −4q1
xx + 3q2

xx − 2q3
xx − ∂q2V (q),

∂tq
3 = 4q1

xx − 4q2
xx + 2q3

xx − ∂q1V (q).
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Eliminating the variable v in favor of higher derivatives in time of q2 gives (4.6)
with
(4.51)

z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

p1

p2

p3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

S(z) = V (q) + 1
2p

Tβp, and the only nonzero entry of E given by E2,2 = 1
α .

If we apply the construction algorithm for r = 2, then once again we can drop the
ODEs for the second stage variables and write the ODEs for the first stage variables
in terms of the node variables giving the following ODEs at cell i:
(4.52)

∂tq
1
i =

1

(Δx)2
(−2q1

i−1 + 2q2
i−1 + 4q1

i − 4q2
i − 2q1

i+1 + 2q2
i+1) + ∂q3V (qi),

∂2
t q

2
i =

α

(Δx)2
(−4q1

i−1 + 3q2
i−1 − 2q3

i−1 + 8q1
i − 6q2

i + 4q3
i − 4q1

i+1 + 3q2
i+1 − 2q3

i+1)

− α∂q2V (qi),

∂tq
3
i =

1

(Δx)2
(4q1

i−1 − 4q2
i−1 + 2q3

i−1 − 8q1
i + 8q2

i − 4q3
i

+ 4q1
i+1 − 4q2

i+1 + 2q3
i+1) − ∂q1V (qi).

5. Discussion. We would like to point out that the discretization in space by
Lobatto IIIA–IIIB in the above examples only modifies the linear component of the
multi-Hamiltonian PDE, i.e., the discrete approximation of Lzx. The reason for this is
that, throughout the construction algorithm, the nonlinear components of the multi-
Hamiltonian PDE always appear coupled to the time derivatives as the expression
∂qηV (Qi) + gηi .

Furthermore, we note that, in the examples above, the same pattern of coeffi-
cients arises from discretizing different PDEs with the same order Lobatto IIIA–IIIB
discretization. For example, with r = 2 the coefficients in the approximation of qxx

have a weighting proportional to [1, −2, 1], while for r = 3 these coefficients are
proportional to [−1, 8, −14, 8, −1] for the first ODE and [4, −8, 4] for the second
ODE. This behavior continues for higher values of r; e.g., for r = 4 the approximation
of qxx in the first ODE has coefficients proportional to [1, 1

2 (25 − 15
√

(5)), 1
2 (25 +

15
√

(5)), −52, 1
2 (25+15

√
(5)), 1

2 (25−15
√

(5)), 1], the second ODE has coefficients

proportional to [5 + 3
√

(5), −20, 10, 5− 3
√

(5)], and the third ODE has coefficients

proportional to [5−3
√

(5), 10, −20, 5+3
√

(5)]. For higher values of r these patterns
of the coefficients in the approximation of qxx become increasingly complicated, yet
for a given value of r these patterns remain the same regardless of the PDE under
consideration.

The reason these patterns of coefficients occur for different PDEs is due to (4.16)

and (4.17). For a given value of r, C and dζ
i are fixed regardless of the PDE. Similarly,

the coefficients bTA(2) and bT − bTA(2) in (4.17) are completely determined by r.
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Thus, when solving (4.16) and (4.17) for gηi , the same weighting of the nearby stage
variables occurs for qxx for different PDEs.

For an r stage discretization, the approximation to qζxx at stage j of cell i is given
by

(5.1) − 1

(Δx)2
(C−1dζ

i )j−1 =
1

(Δx)2

r−1∑
k=2

(C−1)j−1,k−1((1 − ck)Q
ζ
i,1 −Qζ

i,k + ckQ
ζ
i,r)

for 2 ≤ j ≤ r − 1 and 1 ≤ ζ ≤ r, where C and ck are given by (3.5) and (3.2),
respectively. The approximation to qζxx at stage 1 of cell i + 1 is given by

(5.2)
1

2b1(Δx)2

(
r−1∑
k=2

(
(bTA(2))k(C

−1dζ
i+1)k−1 + (bT − bTA(2))k(C

−1dζ
i )k−1

)

+ (Qζ
i+2,1 − 2Qζ

i+1,1 + Qζ
i,1)

)
,

where b1 is the first entry in b.
This suggests the following shortcut:

1. Write the PDE with only terms of the form zxx (no zx).
2. Replace the zxx terms with the PRK finite differences of the desired order.

Now, the system of ODEs that one obtains from applying Theorem 4.1 to an
appropriate PDE can be written as a Hamiltonian system; e.g., for the Boussinesq
equation and r = 2, the system of ODEs at node i can be written as

(5.3) ∂tzi = J−1∇ziHi,

where

(5.4) zi =

[
qi

pi

]
, J−1 =

[
0 1

−1 0

]

and

(5.5) Hi =
1

(Δx)2
(−qi−1qi + q2

i − qiqi+1 + εpi−1pi − εp2
i + εpipi+1) + V (pi).

If the nonlinear terms in such a Hamiltonian system are separable, then one can apply
an explicit symplectic PRK discretization in time to obtain an explicit (and hence
well defined) high order local multisymplectic integrator. If the nonlinear terms are
not separable, then other explicit time integrators may be applied, e.g., symplectic
splitting methods [20], which may give superior performance (in terms of speed and
stability) over implicit integrators. Even if no explicit time integrator can be applied to
the Hamiltonian system, there may be some benefits to having a spatial discretization
that gives rise to explicit ODEs; e.g., the ODEs may be less stiff than those obtained
from an implicit discretization.

In the examples in the previous section, the systems of ODEs arising from the
nonlinear wave equation and the Boussinesq equation both have separable Hamilto-
nians and thus allow for a high order explicit symplectic PRK discretization to be
applied in time. The NLS equation is not so fortunate, however; its nonlinearity is
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only quadratic, and thus for an r-stage Lobatto IIIA–IIIB discretization in time it is
necessary to solve a system of r−1 coupled quadratic equations for each update of Pi

or Qi. For r = 2, this quadratic equation can be solved explicitly (in particular, the
same root of the quadratic is always taken) and an explicit (and hence well defined),
local, high order in space, multisymplectic integrator can be formed.

Another point that we would like to make is about how the ODEs that one
obtains from our construction algorithm handle boundary conditions. Many other
discretization schemes (e.g., implicit midpoint, higher order Gaussian Runge–Kutta)
either do not remain well defined or require extra conditions to be so [2, 19]. However,
our ODEs remain well defined under periodic, Dirichlet, and Neumann boundary
conditions without any further restrictions. For example, 3-stage Lobatto IIIA–IIIB
applied to the NLS equation with Neumann boundary conditions, ψx = 0, applied to
the left boundary as v1 = w1 = 0 leads to the following ODEs:

(5.6)

∂tP1,1 = − 1

(Δx)2
(−14Q1,1 + 16Q1,2 − 2Q2,1) − 2(P 2

1,1 + Q2
1,1)Q1,1,

∂tQ1,1 =
1

(Δx)2
(−14P1,1 + 16P1,2 − 2P2,1) + 2(P 2

1,1 + Q2
1,1)P1,1,

which are equivalent to the first and fourth lines of (4.29), where the points outside
the domain are treated as phantom points, i.e., Q0,1 = Q2,1 and Q0,2 = Q1,2.

Finally, we would like to point out that although Theorem 4.1 is stated for the
Lobatto IIIA–IIIB class of PRK discretizations, it applies equally well to any PRK dis-
cretization satisfying (3.3), (3.4), and (3.5). We leave it as an open question whether
there are any other PRK discretizations that satisfy (3.3), (3.4), and (3.5).

In this paper we have deliberately restricted our attention to the structural prop-
erties of PRK discretization, namely its multisymplecticity and explicitness. Results
on its dynamical properties, such as order and dispersion, will be reported elsewhere.
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