
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Preliminary Analysis of Review Method Selection
Based on Bandit Algorithms

Takuto Kudo
Kindai University

Higashi-osaka, Japan
1910370079g@kindai.ac.jp

Masateru Tsunoda
Kindai University

Higashi-osaka, Japan
tsunoda@info.kindai.ac.jp

Amjed Tahir
Massey University

Palmerston North, New Zealand
a.tahir@massey.ac.nz

Kwabena Ebo Bennin
Wageningen UR

Wageningen, Netherlands
kwabena.bennin@wur.nl

Koji Toda
Fukuoka Institute of Technology

Fukuoka, Japan
toda@fit.ac.jp

Keitaro Nakasai
Kagoshima College, NIT

Kirishima, Japan
nakasai@kagoshima-ct.ac.jp

Akito Monden
Okayama University

Okayama, Japan
monden@okayama-u.ac.jp

Kenichi Matsumoto
NAIST

Ikoma, Japan
matumoto@is.naist.jp

Abstract—To enhance the reliability of software, it is

important is to review all software artifacts (e.g., design

documents) to remove defects as earlier as possible. There are

various review methods available, and project managers face the

challenge of choosing a suitable method for their current projects.

One of approaches to support the selection of review methods is to

evaluate review methods beforehand, to identify the most effective

method on average. However, past studies have not evaluated

review methods thoroughly as the process can be time-consuming.

We propose a bandit-algorithm (BA) based method to evaluate

and then dynamically select a suitable review method (from a list

of candidates). In our experiments, we assume that the proposed

method is applied to design document review on basic design phase.

We performed experiments based on a simulation, instead of using

an actual dataset. On our simulation, when a review method is

selected by our BA method, productivity (i.e., total development

time) was improved by about 1.25 times, and it was the second

highest among candidates of review methods.

Keywords—Multi-armed bandit problem, online optimization,

design document review, performance comparison

I. INTRODUCTION

Most infrastructures of our society contain or use software,
thus there urgent need to enhance the reliability of software.
Software review is one of the important activities to ensure the
reliability of software systems [2][6][12][15][18][20]. On the
review activity, instead of executing the program, a developer
reads review targets such as design documents and source code
in order to find and locate defects.

Review method is selected by a project manager or quality
assurance team [9]. There are various review method such as
check-list based method, peer review, pass around, walk through,
and inspections [9]. Required effort and their impact is different
among these methods. Therefore, project managers face the
daunting task of selecting a review method which is applicable
and feasible for the specific project. To inform this selection,
past studies [12][15][20] evaluated review methods, and
identified methods which can be effective. However, they
compared only two or three methods, and the evaluation is very
limited. Hence, it is not obvious for project managers which
review method is the best.

The goal of our study is to select an appropriate review
method without such subjective experiments. To achieve the
goal, we propose review optimization method based on bandit
algorithm (BA). Assume that there are two slot machines whose
expected reward is unknown, and 100 coins to be bet. Most
simplest approach is to bet all coins to a machine. Instead of that,
BA repeatedly bets a coin to a machine, and when the reward is
low, the other machine is selected. Intuitively speaking, based
on BA, developers review each page of design documents by
different methods, and identify the best one during the review
activity. BA has been successfully applied to optimize defect
prediction models in prior studies [1][7][13].

In recent year, modern code review (MCE) - a lightweight
review method -[17] has attracted attention. However,
conventional review are still widely used in industry. For
instance, an ISO standard about review of software design
document [8] was recently established. Additionally, institutions
[10][14] have collected data about design document review.
Therefore, review of design document is still important.

II. RELATED WORK

Review method evaluation: Laitenberger et al. [12]
compared checklist-based reading and perspective-based
reading on reviewing object-oriented design documents using
the unified modeling language (UML). The study performed a
subjective experiment with 18 participants, and concluded that
the latter method found more defects, and the cost was lower,
compared with the former method. Porter et al. [15] compared
scenario-based with ad hoc and checklist=based methods on the
review of software requirements specifications. They performed
subjective experiment, and used 18 professional software
developers as the subjects. They concluded that defect detection
rate of the scenario method was higher than other methods.
Thelin et al. [20] focused on a user's point of view, and evaluated
review methods by subjective experiment. In the experiment,
they compared usage based and checklist based method. As a
result, the former method found defects which related to the
view effectively and efficiently, compared with the latter
method.

In spite of the past studies, it is not perfectly clear which
review method is the best. Past studies evaluated review

methods based on subjective experiments. Such experiments are
known to be time consuming, and therefore, it is difficult to
compare many review methods simultaneously. Hence, past
studies compared two or three methods. The number of
comparison is considerably small, compared with other studies
which compared methods without subjective experiment. For
instance, a study which evaluated clone detection methods
compared 30 methods [16]. Therefore, supporting review
method selection is needed.

In our previous work, we applied BA for the selection of
defect prediction models [1][7][13]. In [7], we used BA to select
defect prediction model from four candidates, and BA
dynamically selected from the candidates using Epsilon-greed.
As a result, the prediction accuracy was the best or the second-
best on three datasets. In [1], we used BA for cross-project
defect prediction (CPDP). CPDP means a model is trained using
data obtained from external projects. The study used BA to
select the most suitable training project from a set of projects. In
the experiment BA attained a higher accuracy than four baseline
methods, on average. In [13], we used BA to select a suitable
feature reduction technique, when building a defect prediction
model. In the experiment, they used four candidates of reduction
techniques. As a result, the prediction accuracy of BA was
higher or equivalent than existing approaches on average.

Based on the successful results from applying BA for defect
prediction, BA is expected to be effective when applied for
review method selection. However, those previous studies
evaluated BA to select defect prediction methods, and only one
factor, prediction accuracy (e.g., AUC) was considered. While
to evaluate BA on the review methods selection, both required
review time (i.e., cost) and reduced time by finding defects
should (i.e., quality of work) be considered, as explained in
Section 4.

III. BANDIT ALGORITHMS

BAs are proposed to solve multi-armed bandit problems.
Those type of problems are often explained through an analogy
with slot machines. Assume that a player has 100 coins to bet on
several slot machines, and the player wants to maximize their
reward. Instead of selecting only one slot machine and betting
all 100 coins, BA suggests that a player bet only one coin on
each slot machine. By calculating average reward of each
machine after each betting, the player can then recognize which
slot machine is the best (i.e., the highest average reward). The
derivation of the problem is that each slot machine has an arm,
and the arm is compared to a bandit who steals money from
players. Multi-armed bandit problem seeks sequentially best
candidates (they are referred to as arms) whose expected
rewards are unknown, to maximize total rewards.

Epsilon-greedy Algorithm: This algorithm chooses a
random arm with probability epsilon. That is, it selects an arm
whose average reward is the highest among arms with the
probability 1 - ε (0 ≤ ε ≤ 1). When the value of ε is 0, arms are
always selected based on the average reward of each arm. In
contrast, when the value of ε is 1, arms are always selected
randomly.

Upper Confidence Bounds: UCB algorithm [3] focus on
not only average reward of each arm, but also the amount of

information about each arm. For instance, when an arm is
selected only once, we do not have enough information about
the arm, and it is not clear whether the average of reward is valid
or not. After the arm is selected repeatedly, we can know the
valid average. UCB positively selects such less-information
arms because they might have high average reward. To do that,
UCB selects the arm where the value of r in the following
equation is the highest:

 � = � + ��ln�
� (1)

In the equation, x denotes average reward of the arm, s is the
number of times the arm is selected, and t is the number of total
trials. The right most term denotes the amount of information of
the arm. When s is small, the value r is large, and the arm is
selected with a high probability.

Thompson Sampling: Thompson Sampling (TS) samples a
value from the beta distribution for each arm - an arm is then
selected when the value is the maximum [5]. The beta
distribution is the distribution of the probability of “success” on
a Bernoulli trial, and the distribution has parameters α and β.
Assuming that “wins” occurs m times, and “losses” occurs n
times on the trial, the estimated probability of the occurrence of

Fig. 1. Relationship between defect removal cost and phase [19].

Fig. 2. An example of cost and reward by review.

TABLE I. AN EXAMPLE OF PROCEDURE BY BA-BASED SELECTION

BA for review method selection

Reviewed

page no.

Review

method

Total

time
Defects

Avg. (cost

+ reward)

of χ

Avg. (cost

+ reward)

of ω

Ordinal BA

Number

of play

Slot

machine

Total

reward
Reward

Avg.

reward of

χ

Avg.

reward of

ω

1 χ 1 No 1 0
2 ω -7 Yes 1 -8
3 ω -5 No 1 -3

0

10

20

30

40

Design Coding Integration
test

Acceptance
test

Post
releaseR

e
la

ti
v
e

 t
im

e
 o

f
th

e
 r

e
m

o
v
a

l

Defect removal phase

Decreased by review

0 10 20 30

After review
(defects found)

After review
(no defect found)

Before review

Total develoment time

Other time Defect removal time on later phase Review time

“wins” will follow the beta distribution where α is m + 1 and β
is n + 1. Using TS, the expected reward r is calculated as:

r = random.beta (m + 1, n + 1) (2)

where random.beta samples a value from beta distribution
with α = m + 1 and β = n + 1, m is the number of wins, and n is
the number of losses. As a result, the expected reward of an arm
increases with the increase in the number of wins and the
decrease in the number of losses.

IV. REVIEW METHOD SELECTION

Overview: Previous studies [4][11][19] indicated that cost
to remove defects increases as software development advances.
That is, the advantage of software review is that time to remove
defects is suppressed by finding defects during early stages of
the development, as shown in Figure 1. The disadvantage is that
review requires additional effort (i.e., working hours). To apply
BA to review method selection, we related review activities to
the metaphor of slot machine of BA as follows:

 One play on a slot machine (needs one coin): reviewing one
page of documents (needs certain working hours).

 Reward of slot machine: reducing development time by
finding defects (i.e., time enclosed by a box in Figure 1).

 Slot machine (winning probability): the probability of
finding defects are different with different review methods.

Cost and reward: We set cost and reward, based on the
following assumptions:

 Goal: Shortening total development time.
 Cost: The total time is increased by the review time, when a

page of the documents is reviewed by a method.
 Reward: The total time is decreased by finding defects,

which are found with a certain probability by the method.

Assume that required review time is two hours, decreased
time by finding defects (i.e., defect removal time on later phase)
is 10 hours, and probability of finding defects is 30%. In this
case, after reviewing one page, the total development time
changes as follows (see Figure 2):

 No defect found (P = 70%): Total time += 2 hours
 Defects found (P = 30%): Total time += (2 - 10 hours)

Example of the procedure: Table I shows an example of
the proposed BA-based selection method. We assume that
review methods χ and ω are used, and required time for the
review is one hour and two hours respectively.

1. Method χ is randomly selected, and the first page is reviewed.
As a result, no defect is found, and the total working time
increases by 1 hour.

2. Method ω is selected based on average working time, and
the second page is reviewed. As a result, defects are found,
and the total working time decreases by 8 hour (i.e., -10 + 2).

3. Method ω is still selected, and the third page is reviewed. As
a result, no defect is found, and the total working time
increases by 2 hours.

Parameter settings: To apply BA-based selection to actual
software review, some of parameters show in Figure 3 and Table
II should be settled. Table II shows the required actions and

configurations of each parameter. The details of the parameters
are explained in the next section.

Additional procedure: BA-based selection needs additional
procedure to apply actual software projects as follows:

 Switch review methods.
 Record the number of identified defects and the review time.
 Select a review method based on BA.

Reviewers are needed to switch review methods based on
BA. However, most of review methods are a sort of guidelines,
and therefore, it does not needs much effort for developers to
accustom and switch the methods. The number of found defects
and review time are recorded on most projects where
quantitative management is conducted. Therefore, that does not

Fig. 3. Paramaters for BA-based selection.

TABLE II. REQUIRED ACTIONS AND RECOGNIZABILITY OF PARAMETERS

Item Parameter Required action Recognizable

(a)
Required Review
time

Measured during
test

After review

(b)
Probability of
finding defects

Not required After review

(c) Decreased time
Estimated
beforehand

No

(d) Found phase factor
Estimated
beforehand

No

(e) Severity factor
Estimated
beforehand

No

(f) Number of trials Not required Before review

TABLE III. REQUIRED TIME (A) AND PROBABILITY OF FINDING (B) ON

EACH METHOD (BASED ON [10])

Review method α β γ δ

Required time
Value 0.46 0.61 0.92 1.83

Scale 0.75 - 1.50 2.00

Probability of

finding

Value 0.14 0.28 0.35 0.52

Scale 0.50 - 1.25 1.50

TABLE IV. PROBABILITY OF FINDING DEFECTS AND RELATIVE TIME TO

REMOVE THEM FOR FOUND PHASE FACTOR (D) [19]

Phase Coding
Integration

test

Acceptance

test

Post

release

Probability

of finding
0.16 0.53 0.09 0.23

Relative

increased

time

5 10 15 30

TABLE V. PROBABILITY OF FINDING DEFECTS AND TIME TO REMOVE

THEM FOR SEVERITY FACTOR (E) (BASED ON [14][19])

Severity Low Medium High

Probability of finding 0.490 0.355 0.155
Removal time 1 2 6

Total time += (2 - 10 hours) (P = 30%)

(a) Required
Review time

(b) Probability of
finding defects

(c) Decreased time

(d) Found phase factor (e) Severity factor

need additional cost on such projects. Selecting review method
based on BA does not require additional effort for reviewers,
once brief system for BA-based selection is made.

V. EXPERIMENT

Overview: In the experiment, we assumed that BA-based
selection is applied to the review of design documents on the
normal software design phase. The number of applied review
method is four, and we named them α, β, γ, and δ. Note that the
methods are imaginary ones for the experiment.

Instead of using actual dataset, we evaluated BA-based
method by simulation. This is because we are unable to identify
an actual dataset of design document review which can be used
for this experiment. To set the parameters shown in Table II, we
used the setting noted in [10][14][19] which shows summary
statistics of dataset collected from software development
companies We have done so to avoid setting parameters that
make BA-based selection better intentionally. Based on the
parameter settings, we generated artificial review dataset for the
experiment. We made our replication package available online1.

As the baseline for the evaluation, we selected one of review
methods randomly. We repeated the experimental procedure 20
times, because ε-greedy selects arms randomly with the
probability ε, and that could affect the results.

 Performance of BA-based selection is evaluated based on
total reduced time by the review. The time is calculated by the
following equation:

Total reduced time = reduced time by finding defects
- required review time (3)

As explained in the previous section, the total reduced time
is regarded as total reward, reduced time by finding defects
earlier is regarded as reward, and required review time is
regarded as cost. Therefore, when the reduced time is large, the
method is regarded as effective to enhance productivity of the
development project.

Required time and probability of finding: Required
review time (item (a)) and probability of finding defects (item
(b)) are different for each review method. In the simulation, we
set them as shown in Table III. On review method β, we used
the median of study [10] (gray shaded cells in Table III).

On the other methods, we multiplied the median of required
time by n. On review method α, γ, and δ, we set n as 0.75, 1.5
and 2.0, respectively. When review time is long, the probability
of finding defects is expected to be high. However, we assumed
that the probability is not improved linearly. We multiplied the
median of probability by m. On review method α, γ, and δ, we
set m as 0.5, 1.25 and 1.5, respectively.

Values in the Table are included in interquartile range shown
in [10]. Therefore, we considered the settings to be valid. Note
that, this setting is not needed to apply BA-based selection.
Instead of the setting, actual time of review should be measured.

Decreased time: Decreased time by review (item (c)) is
same as increased time without review. The increased time is
based on found phase factor (item (d)) and severity factor (item
(e)). Therefore, decreased time was calculated by multiplying
the two factors.

Defect identification phase factor: Table IV shows the
probability of finding defects and relative time to remove them
to settle item (d). Table IV is based on the numerical examples
shown in study [19]. The value of the factor was selected based
on the probability shown on the table.

Severity factor: Table V shows probability of finding
defects and time to remove them to settle item (e). As probability
of defect severity, we used the rate of defect severity after
software release (within three months) shown in [14] (gray
shaded cells Table V). As removing time for the medium
severity, we used the median shown in [19] (bold number in the
table). For other severities, we multiplied the median by n. On
low and high severity, we set n as 0.5 and 3.0 respectively. The
value of the factor was selected based on the probability shown
on the table.

Number of trials: To evaluate BA, we need to set the
number of trials (i.e., item (f)). Based on [14], the median of the
page count of design documents was 160. The median of
maximum team size was five on basic design phase [14], and we
assumed that most of the team members review documents.
Therefore, we assumed that each developer reviews 40 pages
(i.e., page count / number of reviewers = 160 / 4), and set the
number of trials to 40.

VI. RESULT

Conventional approach: Table VI shows descriptive
statistics of the total reduced time of each review method and
the random selection. The reduced time was the largest, when
both required review time and probability of finding defects
were the highest among methods (i.e., method δ). Therefore, if
we select such method on actual development, we might achieve
the highest productivity. However, as shown in Table II, they
are not recognizable before review, and hence we should select
a method from candidates randomly. The total reduced time of
the random selection is the average of the total time of all
methods.

Review method selection by BA: Table VII shows the total
reduced time of each BA method. All of the reduced time was
larger than random selection shown in Table VII. In BA methods,
the average and the median of UCB was the largest. Specifically,
when we compared UCB with the random selection, the median

TABLE VI. TOTAL REDUCED TIME OF REVIEW METHODW AND RANDOM

SELECTION

Review

method
α β γ δ

Random

selection

Average 96.2 214.4 262.9 371.1 236.1

Median 99.2 203.1 238.4 379.3 215.1

Standard

deviation
55.3 86.7 110.5 87.1 131.0

TABLE VII. TOTAL REDUCED TIME OF BA-BASED SELECTION

BA

method
ε = 0

ε =

0.1

ε =

0.2

ε =

0.3
UCB TS

Average 264.9 274.2 289.7 276.4 298.5 268.7
Median 284.8 287.8 280.7 250.3 299.8 262.5
Standard

deviation
133.4 115.5 127.9 108.7 120.8 127.8

1 https://zenodo.org/record/7246225

and the average were improved over 1.25 times. When we
compared with each review method, UCB was the second
highest among methods.

Therefore, in the simulation with our parameter settings,
using BA-based selection with UCB, the total reduced time (i.e.,
productivity of development project) is greatly improved,
compared with random selection. Also, it attains the second
highest productivity among review methods. In actual
development, reviewers might implicitly know which method
tends to be better, as shown in Table III. However, unless the
best method can be selected by the knowledge, it is better to
apply BA-based selection with UCB, which can select the
second best.

VII. CONCLUSION

In this study, we focused on review methods on software
development, and proposed a new BA-based selection method
to select an effective review method. To support the method
selection, previous studies have tried to identify the best review
methods based on subjective experiments. However, such
evaluation is time-consuming without providing much clarity.
However, BA-based selection evaluates review methods during
review activity, and dynamically selects the best one. In the
experiment, we performed the simulation based on actual
software development dataset, to evaluate BA-based selection.
For the BA, we used Epsilon-greedy, UCB, and Thompson
sampling. We used total reduced time by the review (i.e., review
cost - reduced time by finding defects). We prepared four
candidates of review methods. As a result, we observed the
followings:

 UCB was the highest performance among BA.
 UCB receded total development time by about 1.25 times,

compared with random method selection.
 The effect of UCB was the second highest among review

method candidates.

As future work, we will perform subjective experiment, and
evaluate the extent in which the total time is reduced by BA-
based selection.

ACKNOWLEDGMENT

This research is partially supported by the Japan Society for
the Promotion of Science [Grants-in-Aid for Scientific Research
(C) and (S) (No.21K11840 and No. 20H05706).

REFERENCES

[1] T. Asano, M. Tsunoda, K. Toda, A. Tahir, K. Bennin, K. Nakasai, A.
Monden, and K. Matsumoto, “Using Bandit Algorithms for Project
Selection in Cross-Project Defect Prediction,” Proc. of International
Conference on Software Maintenance and Evolution (ICSME 2021),
pp.649-653, 2021.

[2] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: software
inspections after 25 years,” Journal of Software: Testing, Verification and
Reliability, vol.12, no.3, pp.133-154, 2002.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol.47, pp.235-256,
2002.

[4] B. Boehm, and V. Basili, "Software Defect Reduction Top 10 List," IEEE
Computer, vol.34, no.1, pp.135–137, 2001.

[5] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”
Proc. of International Conference on Neural Information Processing
Systems (NIPS), pp.2249-2257, 2011.

[6] M. Ciolkowski, O. Laitenberger, and S. Biffl, “Software reviews, the state
of the practice,” IEEE Software, vol.20, no.6, pp.46-51, 2003.

[7] T. Hayakawa, M. Tsunoda, K. Toda, K. Nakasai, A. Tahir, K. Bennin, A.
Monden, and K. Matsumoto, “A Novel Approach to Address External
Validity Issues in Fault Prediction Using Bandit Algorithms,'' IEICE
Transactions on Information and Systems, vol.E104.D, no.2, pp.327-331,
2021.

[8] International Organization for Standardization (ISO), Software and
systems engineering — Work product reviews, ISO/IEC 20246:2017,
ISO, 2017.

[9] Information-technology Promotion Agency (IPA), Guidebook of
devemopment methods to achieve high reliablility software, IPA, 2011
(in Japanese).

[10] Information-technology Promotion Agency (IPA), The 2018-2019 White
Paper on Software Development Projects, IPA, 2018 (in Japanese).

[11] C. Jones, Applied Software Measurement: Global Analysis of
Productivity and Quality, McGraw-Hill, 2008.

[12] O. Laitenberger, C. Atkinson, M. Schlich, K. Emam, "An experimental
comparison of reading techniques for defect detection in UML design
documents," Journal of Systems and Software, vol.53, no.2, pp.183-204,
2000.

[13] M. Tsunoda, A. Monden, K. Toda, A. Tahir, K. Bennin, K. Nakasai, M.
Nagura, and K. Matsumoto, “Using Bandit Algorithms for Selecting
Feature Reduction Techniques in Software Defect Prediction,” Proc. of
Mining Software Repositories Conference (MSR 2022), pp.670-681,
2022.

[14] S. Ohiwa, T. Oshino, and S. Nakai, Analysis of Software Project Data
Repository, Economic Research Association, 2020 (in Japanese).

[15] A. Porter, and L. Votta, “Comparing Detection Methods For Software
Requirements Inspections: A Replication Using Professional Subjects,”
Empirical Software Engineering, vol.3, pp.355-379, 1998.

[16] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Software Engineering, vol.23, pp.2464-
2519, 2018.

[17] C. Sadowski, E. Söderberg, L. Church, M. Sipko and A. Bacchelli,
“Modern Code Review: A Case Study at Google,” Proc. of International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), pp.181-190, 2018.

[18] F. Shull, I. Rus, and V. Basili, “How perspective-based reading can
improve requirements inspections,” IEEE Computer, vol.33, no.7, pp.73-
79, 2000.

[19] G. Tassey, The Economic Impacts of Inadequate Infrastructure for
Software Testing, National Institute of Standards and Technology, 2002.

[20] T. Thelin, P. Runeson, and C. Wohlin, “An experimental comparison of
usage-based and checklist-based reading,” IEEE Transactions on
Software Engineering, vol.29, no.8, pp.687-704, 2003.

