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Abstract—Various clone detection methods have been 

proposed in the past, with results varying depending on the 

combination of the methods and parameters setting used (i.e., 

configurations). To help with the selection of a suitable clone 

detection configuration, we propose Bandit Algorithm (BA) 

approach that can help in evaluating the configuration used 

dynamically while using detection methods. Our preliminary 

analysis showed that our approach is able to identify the best 

configurations from four used code clone detection methods. 

Keywords—online optimization, multi-armed bandit, external 

validity, duplicated code 

I. INTRODUCTION 

Copy past existing code is a very common practice in 
software development [1], which can lead to code clones. There 
are many purposes to modify the clones (e.g., refactoring and 
bug fixing) [1]. The recommendation is to remove clones from 
the code to avoid potential problems. The standard process 
followed to modify cloned code is as follows: 

1. Code clones are detected by tools. 
2. Developers judge whether they should modify the code, if yes, 
3. The clones are modified or removed. 

Different clone detection methods have been proposed in the 
past. To help with the selection of a suitable method, a previous 
study [1] compared the accuracy of different detection methods. 
The accuracy of the detection methods usually depends on the 
parameter settings of the method (i.e., configurations). 

To select clone detection tool configuration, considering its 
accuracy, we propose to collect the evaluation of detected clones 
done by developers. Before this process takes place, we used 
several tools to detect code clones. On step 1, a clone candidate 
detected by a tool is shown to a developer. When a developer 
decided that a clone is valid, the developer will rate the tool 
which showed the candidate as “valid” (e.g., rate it by clicking 
a thumbs-up icon). On the other hand, when the developer 
judges the clone as not valid, then they will rate it as “invalid.” 
This evaluation procedure is similar to the rating used in many 
recommender systems. According to the accumulation of the 
evaluation, the best possible configuration will then be identified. 

To speed up this selection process, we integrate Bandit 
algorithm (BA) to the evaluation process. BA is often explained 

through an analogy with slot machines (they are referred to as 
arms). Assume that a player has 100 coins to bet on several arms, 
and the player wants to maximize their reward. BA may suggest 
that the player to bet only one coin on each arm to seek the best 
chances. Intuitively speaking, our approach regards different 
configurations as arms, and the evaluation of each configuration 
by developers are the rewards. 

II. SELECTION OF DETECTION TOOL CONFIGURATION BY BA 

To apply our approach, n clone detection tool configuration 
(n is a natural number) are selected at first. It is recommended to 
set n to six configurations or less, as BA performs best when the 
number of arms is set to six [2]. Next, clone candidates are 
detected using the different configurations. The candidates 
shown by each configuration are treated as arms (with n arms 
are created). For instance, in Fig. 1, ac1, ac2, ac3..., and bc1, bc2, 
bc3... are the clone candidates, spread across two arms. 

After the above preparation, the developers iteratively 
evaluate whether code candidates are valid clones m times (m is 
a natural number). BA seeks the best configuration as follows: 

N1. Select an arm based on the average reward of arms. 
N2.  A developer input the evaluation whether a clone candidate 

shown by the selected arm is valid (or not) to the system. 
N3.  Recalculate the average reward of each arm, based on the 

evaluation on step N2. 

Our method replaces step 1 and 2 as step N1 and N2. Step 
N3 is newly added after step 3. We show a concrete example of 
behavior of our method from the first to third iterations. Initially, 
the average reward of all arms is set to zero. Hence, for the first 
iteration in Fig. 1, arm A is selected randomly in step N1. In step 
N2, a developer evaluates weather a clone candidate ac1 is a 
valid clone. In step N3, the reward is then set to -1, since the 
developer does not regard it as “valid.” Based on the evaluation, 
we calculate the average reward for each arm. It shows the 
bottom row of each table in Fig. 1. For the second iteration, arm 
B is selected in step N1, because the average reward of arm B is 
higher than A. In step N2, the developer regards a clone 
candidate bc1 as “valid.” We then perform step 3. In step N3, 
based on the evaluation, the reward is set to 1, since the 
developer regards it as “valid.” Likewise, the third iteration is 
performed, and arm B is selected based on the average reward. 



As explained above, there are many valid reasons for 
modifying/removing clones, and depending on the purpose, the 
method used might differ [1]. Thus, it can be difficult to judge 
the validity of candidates in step N2 without a human judgement, 
though visualization tools such as CCFinderX 
(www.ccfinder.net) are useful in reducing the effort required. 

III. PRELIMINARY ANALYSIS 

We conducted a preliminary analysis on our approach based 
on the result reported in Section 5.5.1 of study [1]. The study 
generated a dataset that includes 10,000 clone candidates, with 
10% of those candidates are true clones. We performed the 
analysis, assuming that developers evaluate the true clones as 
valid in step N2. The study ranked 30 tool configurations, based 
on F-score. We selected the first, 10th, 20th, 30th ranked 
configurations from the list, as shown in Table I. That is, four 
arms were created. On each arm, the probability of appearance 
of valid clone candidates is the same as the precision shown in 
Table 1. In the analysis, we set the following research questions: 

RQ1. Can our approach select the best available configuration? 
RQ2. How many times should developers evaluate the 

configuration candidates in order to identify the best one? 
RQ3. To what extent does the accuracy degrades by the 

evaluation? 

Our proposed approach requires developers’ evaluation. 
RQ2 can help in quantifying the level of evaluation required by 
developers. Candidates by non-best configurations are shown to 
developers in step N2, and that might degrade the detection 
accuracy. RQ3 is set to clarify the extent of the degradation. 

For our BA setup, we used ε-greedy (ε = 0.1, 0.2 and 0.3), 
UCB (upper confidence bounds), and TS (Thompson sampling). 
The calculation of average rewards in step N3 differs among 
algorithms. The order of clone candidates on each arm could 
affect arm selection by BA. For instance, when the order is bc2, 
bc1, bc3... on arm B, then arm B might not be selected. To 
suppress influence of the order, we randomly changed the order 
20 times. As the baseline, we compared BA with the case when 
the configurations are randomly selected.  

In the analysis, 200 iterations of BA were performed. We 
analyzed how many times the best possible configuration (i.e., 
ccfx based on study [1]) was selected, picking up successive 10 
iterations within the 200 iterations, to answer RQ1. We call the 
number of the selection “% of the best config selection”. For 
instance, when ccfx is selected seven times from the 91st to 
100th iterations, we regarded the percentage as 70% at 100th 
iteration (it was calculated based on the moving average). In Fig. 
2, when TS is used, the percentage increases to more than 90% 
after the 150th iterations. Hence, to answer RQ1, it is possible 
to use BA to select the best configurations from a number of 
available ones. The random selection theoretically selects the 
best arm at 25% probability (in the presence of four arms). 

Note that our approach does not calculate F-scores as we do 
not really know the number of false-negative in Fig. 1. 
Nevertheless, the approach selected the best possible 
configuration. This is because, in general, if the precision is high, 
F-score tend to be high as well (in Table 1). We plan to consider 
F-score in our future work. 

Based on Fig. 2, the answer of RQ2 is, developers will need 
a minimum of 150 evaluations in order to identify and select the 
best possible configuration. When there are multiple developers 
working together (e.g., five), each developer should evaluate 
clone candidates 30 times to identify the best configuration. 

In answering RQ3, we focused on the precision of BA. Note 
that we can only evaluate positive results (i.e., precision), since 
the actual number of false-negative cannot be known as 
explained above. When the number of evaluations is 150 and TS 
is used, the precision of BA was 0.89. The accuracy of the 
random selection becomes 0.85, which is average precision of 
the four arms. Therefore, although the accuracy of our method 
was lower than the highest configurations (i.e., ccfx), it was still 
higher than the second one (i.e., ncd-zlib) and the baseline (i.e., 
random selection). 
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Fig. 1. Selection of detection tool configuration based on BA. 

TABLE I.  USED CONFIGURATIONS AND THEIR PERFORMANCE [1] 

Tool Settings Precision Recall F-score Rank 

Ccfx b=5, t=11 0.98 0.98 0.98 1 
ncd-zlib N/A 0.88 0.79 0.84 10 
7zncd-Deflate mx=7 0.87 0.79 0.82 20 
Bsdifa N/A 0.68 0.42 0.52 30 

 

 

Fig. 2. Relationship between iterations of BA and % of best config selection. 
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